Advanced Search

WANG Junkai, XU Fuqiang, WANG Shuyang, DONG Miaoyin, YANG Ning. Research Progress in Radiation Pretreatments of Lignocellulose[J]. Nuclear Physics Review, 2019, 36(3): 379-387. doi: 10.11804/NuclPhysRev.36.03.379
Citation: WANG Junkai, XU Fuqiang, WANG Shuyang, DONG Miaoyin, YANG Ning. Research Progress in Radiation Pretreatments of Lignocellulose[J]. Nuclear Physics Review, 2019, 36(3): 379-387. doi: 10.11804/NuclPhysRev.36.03.379

Research Progress in Radiation Pretreatments of Lignocellulose

doi: 10.11804/NuclPhysRev.36.03.379
Funds:  National Natural Science Foundation of China (11305225); Key Projects of Chinese Academy of Sciences (KFZD-SW-109)
  • Received Date: 2019-02-22
  • Rev Recd Date: 2019-07-20
  • Publish Date: 2019-09-20
  • In this paper, the effects and characteristics of several main irradiated pretreatment methods for lignocellulose are compared and summarized comprehensively. The mechanism of lignocellulose pretreated by microwave, ultraviolet, gamma ray, X ray, electron beam and ion beam were expounded. In particular, the transformation of polymorphys in lignocellulose (Iα → Iβ) caused by pretreatment with heavy ion beams irradiation was discussed. The crystallinity index of lignocellulose was strongly correlated with enzyme digestibility. The pretreatment of heavy ion beam radiation can destroy the lignin and hemicellulose partially, resulting in an increase in its relative crystallization, which enhances the accessibility of cellulase and lignocellulose, also increase the enzymatic hydrolysis yield. Therefore, the biotransformation efficiency of enzyme to lignocellulose and the yield of reducing sugar can be significantly improved at the appropriate dose of heavy ion beam radiation pretreatment, which provides the theoretical guidance for radiation pretreatment to improve the comprehensive utilization of lignocellulose.
  • [1] ARANTES V, SADDLER J N. Biotechnology for Biofuels, 2010, 3(1):4.
    [2] LYND L, LASER M D, DALE B, et al. Nature Biotechnology, 2008, 26(2):169.
    [3] KUMARI, D, SINGH, R. Renew Sust Energ Rev, 2018, 90:877.
    [4] LIU Y, ZHOU H, WANG S, et al. Bioresource Technology, 2015, 182:289.
    [5] CUI G T, YANG B, ZHAO H Y, et al. Journal of Radiation Research and Radiation technology, 2018, 36(05):30. (in Chinese) (崔国士, 杨蓓, 赵红英, 等. 辐射研究与辐射工艺学报, 2018, 36(05):30.)
    [6] WANG S Y, XU F Q, WANG J K, et al. A Method to Improve the Enzymatic Hydrolysis Efficiency of Lignocellulose, China, 201910091234.4. C12N 1/18[P].[2019-01-30]. (in Chinese) (王曙阳, 许富强, 王俊凯, 等. 一种提高木质纤维素的酶水解效率的方法. 中国, CN201910091234.4. C12N 1/18[P].[2019-01-30].)
    [7] WANG B Z. Application of Radiation Technology in the Treatment of Three Wastes[M]. Beijing:Atomic Energy Press, 1983:11. (in Chinese) (王宝章.辐射技术在治理三废中的应用.北京:原子能出版社, 1983:11.)
    [8] ZHAO W Y, PAN X M. Radiation Processing Technology and Its Application-High-tech Green Processing Industry[M]. Beijing:Weapon Industry Press, 2003:4. (in Chinese) (赵文彦, 潘秀苗.辐射加工技术及其应用——高技术绿色加工产业.北京:兵器工业出版社, 2003, 4.)
    [9] SHEN Z Q. Study on the Improvement of Sugar Production by Enzymatic Hydrolysis of Wheat Straw by Irradiation Pretreatment[D]. Changsha:Hunan University, 2008. (沈志强. 辐射预处理提高小麦秸秆酶解产糖的研究[D]. 长沙:湖南大学, 2008.)
    [10] WU C H. Prataculture & Animal Husbandry, 2015(02):1. (in Chinese) (吴春会. 草业与畜牧, 2015(02):1.)
    [11] YANG M G, CHAI L Z, BI X J. Journal of Agricultural Engineering, 2011, 27(02):387. (in Chinese) (杨明妮, 柴连周, 毕先钧. 农业工程学报, 2011, 27(02):387.)
    [12] TANG H T. The Effect of Irradiation Pretreatment on Hydrolyzing Enzyme of Corn Straw[D]. Beijing:Chinese academy of agricultural sciences, 2012. (in Chinese) (唐洪涛. 辐射预处理对玉米秸秆酶解产糖率的影响[D]. 北京:中国农业科学院, 2012.)
    [13] CUI L H, WANG M, WEI X Y, et al. Chinese Journal of Tropical Crops, 2015, 36(02):411. (in Chinese) (崔丽虹, 王蒙, 魏晓奕, 等. 热带作物学报. 2015, 36(02):411.)
    [14] KARAMJEET K, URMILA G P. RENEWABLE Energy, 2016, 92:178.
    [15] ZHANG Y, LI S X, WANG H B, et al. Cellulose science and technology, 2017, 25(01):7. (in Chinese) (张毅, 李双喜, 王海宝, 等. 纤维素科学与技术, 2017, 25(01):7.)
    [16] ZUMAR M A. Bundhoo Renewable and Sustainable Energy Review, 2018, 82:1149.
    [17] SUNG H H, NGOC L M, GWANGMIN A, et al. Bioresource Technology, 2011, 102:1214.
    [18] LIN Y P. Textile Dyeing and Finishing Journal, 2017, 39(04):48.(in Chinese) (林燕萍. 染整技术. 2017, 39(04):48)
    [19] O'SULLIVAN A C. Cellulose, 1997, 4(3):173.
    [20] HABIBI Y, LUCIAN L A, ROJAS O J. Chem Rev, 2010, 110:3479.
    [21] ATALLA R H, VANDERHART D L. Science, 1984, 223:283.
    [22] KARIMI K, SHAFIEI M, KUMAR R. Biofuel Technologies[M]. Berlin:Springer, 2013, 53.
    [23] DEBZI E M, CHANZY H, SUGIYAMA J, et al. Macromolecules, 1991, 24:6816.
    [24] STURCOVA A, HIS I, APPERLEY D C, et al. Biomacromolecules, 2004, 5:1333.
    [25] HE Y L, WANG Y H. Nuclear technology, 1987(02):1. (in Chinese) (何源禄, 王玉华. 核技术, 1987(02):1.)
    [26] SUN F B. Study on the Irradiation Effect and Mechanism of Co60 Gamma Rays on Bamboo[D]. Beijing:Chinese Academy of Forestry Sciences, 2010. (in Chinese) (孙丰波. 竹材Co60γ射线辐射效应及其机理研究[D]. 北京:中国林业科学研究院, 2010.)
    [27] JU X H, BOWDEN M, BROWN E E, et al. Carbohydrate Polymers, 2015, 123:476.
    [28] NAM S H, FRENCH A D, CONDON B D, et al. Carbohydrate Polymers, 2016, 135:1.
    [29] FERNEAA R, FLOREAA I, MANEAA D L, et al. Procedia Manufacturing, 2018, 22:372.
    [30] YANG M C. Study on Combustion Pyrolysis Characteristics of Cellulose with Different Crystallinity[D]. Hefie:China University of Science and Technology, 2019. (杨莫愁. 不同结晶度纤维素的燃烧热解特性研究[D]. 合肥:中国科学技术大学, 2019.)
    [31] LI Y, WANG K X, ZHENG Z H, et al. Paper and Paper Making, 2016, 35(12):26. (in Chinese) (李逸, 王可鑫, 郑卓辉, 等. 纸和造纸, 2016, 35(22):26.)
    [32] XU W Y. The Research of Nanocellulose Fiber Raw Material Preparation[D]. Guangzhou:South China University of Technology, 2016. (in Chinese) (徐威宇. 植物纤维原料制备纳米纤维素的研究[D]. 广州:华南理工大学, 2016.)
    [33] WU Q L, MEI C T, HAN J Q, et al. Jouranl of Forestry Engineering, 2018, 3(01):1. (in Chinese) (吴清林, 梅长彤, 韩景泉, 等. 林业工程学报, 2018, 3(1):1.)
    [34] LIU W, AHANG Y, HAO J G. Tianjin Textile Technology, 2014(02):27. (in Chinese) (刘伟, 张玥, 郝建钢. 天津纺织科技, 2014(02):27.)
    [35] CUI G S, SHU X J, ZHANG R R, et al. HENAN SCIENCE, 2019, 37(2):179. (in Chinese) (崔国士, 束兴娟, 张蕊蕊, 等. 河南科学. 2019, 37(2):179.)
    [36] SI G L, HAN Z L, HOU C Y. Nuclear Technology, 2013, 36(07):28. (in Chinese) (司戈丽, 韩兆磊, 侯春宇. 核技术, 2013, 36(07):28)
    [37] CHENG B L, WANG Y L, REN Y L, et al. Journal of Textile Industry, 2007(06):16. (in Chinese) (程博闻, 汪渊龙, 任元林, 等. 纺织学报, 2007(06):16.)
    [38] YANG B, SHU X J, CUI G S, et al. Henan Chemical Industry, 2018(12):18. (in Chinese) (杨蓓, 束兴娟, 崔国士, 等. 河南化工, 2018(12):18.).
    [39] BAK J S, KO J K, HAN Y H, et al. Bioresour Technol, 2009, 100(3):1285.
    [40] GONG N R, CHANG D H, ZHANG J R, et al. Journal of Beijing Institute of Technology, 1998(05):647. (in Chinese) (宫宁瑞, 常德华, 张剑蓉, 等. 北京理工大学学报, 1998(05):647.)
    [41] XU F Q, WANG J K, DONG M Y, et al. Carbohydrate Polymers, 2019, 222:114976.
    [42] JIN S B. Biotechnology Reports[R]. Amsterdam:Netherlands, 2014:30.
    [43] TISSOT C, GRDANOVSKA S, BARKATT A, et al. Radiation Physics and Chemistry, 2013, (84):185.
    [44] YILMAZ S, SELIM H. Renewable and Sustainable Energy Reviews, 2013, 25:420.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1439) PDF downloads(58) Cited by()

Proportional views

Research Progress in Radiation Pretreatments of Lignocellulose

doi: 10.11804/NuclPhysRev.36.03.379
Funds:  National Natural Science Foundation of China (11305225); Key Projects of Chinese Academy of Sciences (KFZD-SW-109)

Abstract: In this paper, the effects and characteristics of several main irradiated pretreatment methods for lignocellulose are compared and summarized comprehensively. The mechanism of lignocellulose pretreated by microwave, ultraviolet, gamma ray, X ray, electron beam and ion beam were expounded. In particular, the transformation of polymorphys in lignocellulose (Iα → Iβ) caused by pretreatment with heavy ion beams irradiation was discussed. The crystallinity index of lignocellulose was strongly correlated with enzyme digestibility. The pretreatment of heavy ion beam radiation can destroy the lignin and hemicellulose partially, resulting in an increase in its relative crystallization, which enhances the accessibility of cellulase and lignocellulose, also increase the enzymatic hydrolysis yield. Therefore, the biotransformation efficiency of enzyme to lignocellulose and the yield of reducing sugar can be significantly improved at the appropriate dose of heavy ion beam radiation pretreatment, which provides the theoretical guidance for radiation pretreatment to improve the comprehensive utilization of lignocellulose.

WANG Junkai, XU Fuqiang, WANG Shuyang, DONG Miaoyin, YANG Ning. Research Progress in Radiation Pretreatments of Lignocellulose[J]. Nuclear Physics Review, 2019, 36(3): 379-387. doi: 10.11804/NuclPhysRev.36.03.379
Citation: WANG Junkai, XU Fuqiang, WANG Shuyang, DONG Miaoyin, YANG Ning. Research Progress in Radiation Pretreatments of Lignocellulose[J]. Nuclear Physics Review, 2019, 36(3): 379-387. doi: 10.11804/NuclPhysRev.36.03.379
Reference (44)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return