Advanced Search
Volume 35 Issue 4
May  2020
Turn off MathJax
Article Contents

ZHU Qiaodi, CHI Meng, LI Jingke, LI Jiayang, MAO Yingchen. Influence of Curvature Energy on Thermodynamic Driving Force[J]. Nuclear Physics Review, 2018, 35(4): 555-560. doi: 10.11804/NuclPhysRev.35.04.555
Citation: ZHU Qiaodi, CHI Meng, LI Jingke, LI Jiayang, MAO Yingchen. Influence of Curvature Energy on Thermodynamic Driving Force[J]. Nuclear Physics Review, 2018, 35(4): 555-560. doi: 10.11804/NuclPhysRev.35.04.555

Influence of Curvature Energy on Thermodynamic Driving Force

doi: 10.11804/NuclPhysRev.35.04.555
Funds:  National Natural Science Foundation of China (11447019, 11505724, 11375080)
  • Received Date: 2018-10-23
  • Rev Recd Date: 2018-11-21
  • Publish Date: 2020-05-03
  • In order to study the effect of curvature energy on the thermodynamic driving force (TDF) of nuclear fission, the potential and entropy barrier of 200Pb and 224Th systems are calculated by using the truncated droplet model including curvature energy, respectively. Compared with the liquid drop model, the results show that curvature energy does not affect the saddle point of 224Th, but pushes the saddle point of 200Pb backwards the ground state. The stronger the deformation dependence of the level density parameter is, the closer the saddle point of entropy barrier for these systems is to the ground state. In order to further investigate how curvature energy affects TDF through nuclear potential and entropy, respectively, the prescission neutron multiplicity (PNM) is selected as the probe, some simulations based on two schemes are carried out. The results show that curvature energy reduces the potential driving force of 200Pb and 224Th, and enhances the entropy potential driving force. Combined with the calculations and analyses of PNM, the former effect is more obvious than the latter, so curvature energy weakens TDF of two systems on whole, thus delaying the nuclear fission process of two systems.
  • [1] HAHN O, STRASSMANN F. Naturwiss, 1938, 26:756; ibid, 1939, 27:11; ibid, 1939, 27:89.
    [2] LILLEY J S. Nuclear Physics:Principles and Applications[M]. Chichester:John Wiley and Sons, Inc., 2001.
    [3] LOVELAND W D, MORRISSEY D J, SEABORG G T. Modern Nuclear Chemistry[M]. New Jersey:John Wiley and Sons, Inc., 2006.
    [4] SCHRÖDER W U, HUIZENGA J R. In Treatise on Heavy-Ion Science (Vol. 2)[M]. BROMLEY D A ed. New York:Plenum, 1984:116.
    [5] BULGAC A. Annu Rev Nucl Part Sci, 2013, 63:97; BULGAC A, MAGIERSKI P, ROCHE K J, et al. Phys Rev Lett, 2016, 116:122504.
    [6] GODDARD P, STEVENSON P, RIOS A. Phys Rev C, 2015, 92:054610; ibid 93:014620.
    [7] SCHUNCK N, ROBLEDO L M. Rep Prog Phys, 2016, 79:116301.
    [8] LU B N, ZHAO E G, ZHOU S G. Phys Rev C, 2012, 85:011301(R); ZHAO J, LU B N, ZHAO E G, et al. Phys Rev C, 2017, 95:014320.
    [9] ZHAO P W, LI Z P, YAO J M, MENG J. Phys Rev C, 2010, 82:054319.
    [10] PEI J C, NAZAREWICZ W, SHEIKH J A, et al. Phys Rev Lett, 2009, 102:192501; ZHU Y, PEI J C. Phys Rev C, 2016, 94:024329.
    [11] KRAMERS H A. Physica VⅡ, 1940, 4:284.
    [12] GRANGÉ P, PAULI H C, WEIDENMÜLLER H A. Phys Lett B, 1980, 88:9; GRANGÉ P, WEIDENMÜLLER H A. Phys Lett B, 1980, 96:26; GRANGÉ P, LI J Q, WEI-DENMÜLLER H A. Phys Rev C, 1983, 27:2063. WEIDENMÜLLER H A, ZHANG J S. Phys Rev C, 1984, 29:879.
    [13] WU X Z, ZHOU Y Z, CHANG X Z, et al. Commun Theor Phys, 1982, 1:769.
    [14] FRÖBRICH P, GONTCHAR I I, MAVLITOV N D. Nucl Phys A, 1993, 556:281; FRÖBRICH P, GONTCHAR I I. Phys Rep, 1998, 292:131.
    [15] JIA Y, BAO J Dong. Phys Rev C, 2007, 75:034601; JIA Y, BAO J D. Nuclear Physics Review, 2004, 21(4):385. (in Chinese) (贾莹, 包景东. 原子核物理评论, 2004, 21(4):385.)
    [16] NADTOCHY P N, RYABOV E G, GEGECHKORI A E, et al. Phys Rev C, 2012, 85:064619.
    [17] ISHIZUKA C, USANG M D, IVANYUK F A, et al. Phys Rev C, 2017, 96:064616.
    [18] SIERK A J. Phys Rev C, 2017, 96:034603.
    [19] WANG N, YE W. Phys Rev C, 2018, 97:014603.
    [20] BLOCKI J, BONEH Y, NIX J R, et al. Ann Phys, 1978, 113:330.
    [21] FELDMEIER H. Rep Prog Phys, 1987, 50:915.
    [22] NIX J R, SIERK A J. Proc. Of the 6th Adriatic Conference in Nuclure Physics:Frontiers of Heavy-Ion Physics[M]. Singapore:World Scientific, 1990:333.
    [23] HINDE D J, OGATA H, TANAKA M, et al. Phys Rev C, 1989, 39:2268.
    [24] MAO Y C, GU B P. J Phys G:Nucl Part Phys, 2006, 32:2109.
    [25] GONTCHAR I I, MAVLITOV N D, FRÖBRICH P. Comput Phys Commun, 1997, 107:223.
    [26] IGNATYUK A V, SHUBIN YU N, TISHIN A S. Sov J Nucl Phys, 1975, 21:255.
    [27] TÖKE J, SWIATECKI J. Nucl Phys A, 1981, 372:141.
    [28] REISDORF W. Z Phys A, 1981, 300:227.
    [29] PRAKASH M, WAMBACH J, MA Z Y. Phys Lett B, 1983, 128:141.
    [30] MYERS W D, SWIATECKI W J. Nucl Phys A, 1966, 81:1; MYERS W D. Droplet Model of Atomic Nuclei[M]. New York:Plenum, 1977.
    [31] HASSE R W. Ann Phys, 1971, 68:377.
    [32] LIU X, XI Y R, ZHU Q D, et al. Nuclear Physics Review, 2018, 35(2):105. (in Chinese) (刘鑫, 席宇荣, 朱巧迪, 等. 原子核物理评论, 2018, 35(2):105.)
    [33] NEWTON J O, HINDE D J, CHARITY R J, et al. Nucl Phys A, 1988, 483:126.
    [34] HINDE D J, CHARITY R J, FOOTE G S, et al. Phys Rev Lett, 1984, 52:986; ibid, 1984, 53, 2275(E); ibid, Nucl Phys A, 1986, 452:550.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2068) PDF downloads(59) Cited by()

Proportional views

Influence of Curvature Energy on Thermodynamic Driving Force

doi: 10.11804/NuclPhysRev.35.04.555
Funds:  National Natural Science Foundation of China (11447019, 11505724, 11375080)

Abstract: In order to study the effect of curvature energy on the thermodynamic driving force (TDF) of nuclear fission, the potential and entropy barrier of 200Pb and 224Th systems are calculated by using the truncated droplet model including curvature energy, respectively. Compared with the liquid drop model, the results show that curvature energy does not affect the saddle point of 224Th, but pushes the saddle point of 200Pb backwards the ground state. The stronger the deformation dependence of the level density parameter is, the closer the saddle point of entropy barrier for these systems is to the ground state. In order to further investigate how curvature energy affects TDF through nuclear potential and entropy, respectively, the prescission neutron multiplicity (PNM) is selected as the probe, some simulations based on two schemes are carried out. The results show that curvature energy reduces the potential driving force of 200Pb and 224Th, and enhances the entropy potential driving force. Combined with the calculations and analyses of PNM, the former effect is more obvious than the latter, so curvature energy weakens TDF of two systems on whole, thus delaying the nuclear fission process of two systems.

ZHU Qiaodi, CHI Meng, LI Jingke, LI Jiayang, MAO Yingchen. Influence of Curvature Energy on Thermodynamic Driving Force[J]. Nuclear Physics Review, 2018, 35(4): 555-560. doi: 10.11804/NuclPhysRev.35.04.555
Citation: ZHU Qiaodi, CHI Meng, LI Jingke, LI Jiayang, MAO Yingchen. Influence of Curvature Energy on Thermodynamic Driving Force[J]. Nuclear Physics Review, 2018, 35(4): 555-560. doi: 10.11804/NuclPhysRev.35.04.555
Reference (34)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return