Advanced Search
Volume 35 Issue 4
May  2020
Turn off MathJax
Article Contents

CHEN Chaofeng, ZHOU Xianrong, CUI Jiwei, LI Wenying. Study of ∧ Hypernuclei Using the Beyond-mean-field Approach with Skyrme-type N∧ Interaction[J]. Nuclear Physics Review, 2018, 35(4): 409-419. doi: 10.11804/NuclPhysRev.35.04.409
Citation: CHEN Chaofeng, ZHOU Xianrong, CUI Jiwei, LI Wenying. Study of ∧ Hypernuclei Using the Beyond-mean-field Approach with Skyrme-type N∧ Interaction[J]. Nuclear Physics Review, 2018, 35(4): 409-419. doi: 10.11804/NuclPhysRev.35.04.409

Study of ∧ Hypernuclei Using the Beyond-mean-field Approach with Skyrme-type N∧ Interaction

doi: 10.11804/NuclPhysRev.35.04.409
Funds:  National Natural Science Foundation of China(11775081,11547044); Natural Science Foundation of Shanghai, China(17ZR1408900)
  • Received Date: 2018-11-10
  • Rev Recd Date: 2018-11-30
  • Publish Date: 2020-05-03
  • The beyond-mean-field Skyrme-Hartree-Fock approach is adopted to investigate the properties of 9Be, ∧∧10Be, 13C and 21Ne. The nucleon-nucleon (NN) interaction SLy4 and the nucleon-hyperon(N∧) interaction Skyrme-type SLL4 are used. The spin-orbit force of hyperon is included to show the spin-orbit splitting and non-crossing effect with BCS method to deal with pairing force. Energies of different configurations, such as 12C⊗∧[000]1/2+, 12C⊗∧[110]1/2-, 12C⊗∧[101]3/2-, 12C⊗∧[101]1/2-, 8Be⊗∧[000]1/2+, 8Be⊗∧[110]1/2-, 8 Be⊗∧[101]3/2- and 8Be⊗∧[101]1/2- are given and used to study the effects of ∧ occupying different orbitals. The calculated energy spectra, including both positive-and negative-parity levels, are given and compared to the experimental data. The observed positive-parity spin-doublet (3/2+,5/2+) are successfully reproduced, but the energy difference needs further investigation. The two well known band structures corresponding to the genuine hypernuclear states and the 9Be-analog states are also obtained and compared with the observed ones. The shrinkage effect of ∧ occupying ∧[000]1/2+ is investigated through the density distributions of nuclear core. And finally the calculation results of 21Ne are given and compared with the results of RMF method, which are nearly the same but with differences in some details.
  • [1] HASHIMOTO O, TAMURA H. Lect Notes Phys, 2009, 781:105.
    [2] BOTTA E, BRESSANI T, GARBARINO G, et al. Eur Phys J A, 2012, 48:41.
    [3] GAL A, HUNGERFORD E V, MILLENER D J. Rev Mod Phys, 2016, 88:1.
    [4] BRÜCKNER W, FAESSLER M.A, KILIAN K, et al. Phys Lett B, 1975, 55:107; BRÜCKNER W, GRANZ B, INGHAM D, et al. Phys Lett B, 1976, 62:481; BRÜCKNER W, FAESSLER M A, KETEL T J, et al. Phys Lett B, 1978, 79:157.
    [5] DALITZ R H, GAL A. Phys Rev Lett, 1976, 36:362.
    [6] AUERBACH E H, BALTZ A J, DOVER C B, et al. Ann Phys, 1983, 148:381.
    [7] YAMADA T, IKEDA K, MOTOBA T, et al. Nucl Phys A, 1986, 450:333.
    [8] YAMADA T, IKEDA K, BANDŌ H, et al. Phys Rev C, 1988, 38:854.
    [9] PILE P H, BART S, CHRIEN R E, et al. Phys Rev Lett, 1991, 66:2585.
    [10] HASHIMOTO O, AJIMURA S, AOKI K, et al. Nucl Phys A, 1998, 639:93c.
    [11] AHN J.K, AKAISHI Y, AKIKAWA H, et al. AIP Conf Proc, 2001, 594:180.
    [12] HIYAMA E, KAMIMURA M, MOTOBA T, et al. Phys Rev C, 2002, 66:13.
    [13] GAL A, MILLENER D J. Phys Lett B, 2011, 701:342.
    [14] GAL A, SOPER J M, Dalitz R H. Ann Phys (N.Y.), 1971, 63:53.
    [15] GAL A, SOPER J M, Dalitz R H. Ann Phys (N.Y.), 1972, 72:445.
    [16] GAL A. Nucl Phys A, 2005, 754:91.
    [17] HIYAMA E, KAMIMURA M, MOTOBA T, et al. Phys Rev Lett, 2000, 85:270.
    [18] HIYAMA E, YAMAMOTOY, MOTOBA T, et al. Phys Rev C, 2009, 80:054321.
    [19] HIYAMA E, KAMIMURA M, YAMAMOTO Y, et al. Phys Rev Lett, 2010, 104:212502.
    [20] RAYET M. Nucl Phys A, 1981, 367:381.
    [21] CUGNON J, LEJEUNE A, Schulze H J. Phys Rev C, 2000, 62:064308.
    [22] VIDAÑA I, POLLS A, RAMOS A, et al. Phys Rev C, 2001, 64:044301.
    [23] ZHOU X R, SCHULZE H J, SAGAWA H, et al. Phys Rev C, 2007, 76:034312.
    [24] ZHOU X R, POLLS A, SCHULZE H J, et al. Phys Rev C, 2008, 78:054306.
    [25] WIN M T, HAGINO K, KOIKE T. Phys Rev C, 2011, 83:014301.
    [26] SCHULZE H J, RIJKEN T. Phys Rev C, 2013, 88:024322.
    [27] ZHOU X R, HIYAMA E, SAGAWA H. Phys Rev C, 2016, 94:024331.
    [28] WIN M T, HAGINO K. Phys Rev C, 2008, 78:054311.
    [29] SONG C Y, YAO J M, LÜ H F, et al. Int J Mod Phys E, 2018, 19:2538.
    [30] LU Bingnan, ZHAO Enguang, ZHOU Shangui. Phys Rev C, 2011, 84:014328.
    [31] TANIMURA Y, HAGINO K. Phys Rev C, 2012, 85:014306.
    [32] LU Bingman, EMIKO H, HIROYUKI S, et al. Phys Rev C, 2014, 89:044307.
    [33] XU Renli, WU Chen, REN Zhongzhou. Nucl Phys A, 2015, 933:82.
    [34] KANADA-EN'YO Y, HORIUCHI H, Ono A. Phys Rev C, 1995, 52:628.
    [35] ISAKA M, KIMURA M, DOTE A, et al. Phys Rev C, 2011, 83:044323; ISAKA M, KIMURA M, DOTE A, et al. Phys Rev C, 2011, 83:054304.
    [36] ISAKA M, HOMMA H, KIMURA M, et al. Phys Rev C,2012, 85:034303.
    [37] ISAKA M, KIMURA M, DOTE A, et al. Phys Rev C, 2013, 87:021304(R).
    [38] ISAKA M, KIMURA M. Phys Rev C, 2015, 92:044326.
    [39] WIRTH R, GAZDA D, NAVRATIL P, et al. Phys Rev Lett, 2014, 113:192502.
    [40] SCHULZE H J, HIYAMA E. Phys Rev C, 2014, 90:047301.
    [41] MEI H, HAGINO K, YAO J M. Phys Rev C, 2016, 93:011301(R).
    [42] WU X Y, MEI H, YAO J M, et al. Phys Rev C, 2017, 95:034309.
    [43] CUI Jiwei, ZHOU Xianrong, GUO Lixin, et al. Phys Rev C, 2017, 95:024323.
    [44] YAO J M, LI Z P, HAGINO K,et al. Nucl Phys A, 2011, 868:12.
    [45] MEI H, HAGINO K, YAO J M, et al. Phys Rev C, 2014, 90:064302.
    [46] XUE W X, YAO J M, HAGINO K, et al. Phys Rev C, 2015, 91:024327.
    [47] MEI H, HAGINO K, YAO J M, et al. Phys Rev C, 2015, 91:064305.
    [48] MEI H, HAGINO K, YAO J M, et al. Phys Rev C, 2016, 93:044307.
    [49] BENDER M, RUTZ K, REINHARD P G, et al. Eur Phys J A, 2000, 8:59.
    [50] RING P, SCHUCK P. The Nuclear Many-Body Problem[M]. Berlin:Springer, 1980.
    [51] RODRIGUEZ-GUZMAN R, EGIDO J L, Robledo L M. Phys Lett B, 2000, 474:15.
    [52] BONCHE P, DOBACZEWSKI J, FLOCARD H, et al. Nucl Phys A, 1990, 510:466.
    [53] YAO J M, MEI H, CHEN H, et al. Phys Rev C, 2011, 83:014308.
    [54] DOBACZEWSKI J, SATULA W, CARLSSON B G, et al. Comput Phys Commun, 2009, 180:2361.
    [55] SAGAWA H, ZHOU X R, ZHANG X Z, et al. Phys Rev C, 2004, 70:054316.
    [56] TERASAKI J, HEENEN P H, FLOCARD H, et al. Nucl Phys A, 1996, 600:371.
    [57] CUI JiWei, ZHOU Xianrong, HANS-JOSEF S. Phys Rev C, 2015, 91:054306.
    [58] KOHRI H, AJIMURA S, HAYAKAWA H, et al. Phys Rev C, 2002, 65:034607.
    [59] GREINER W, MARUHN J A. Nuclear Models[M]. Berlin:Springer-Verlag, 1996.
    [60] National Nuclear Data Center. http://www.nndc.bnl.gov/.
    [61] GAL A, BARANGER M, VOGT E. Advances in Nuclear Physics, 1975,8:1.
    [62] TAMURA H, AJIMURA S, AKIKAWA H, et al. Nucl Phys A, 2005, 754:58c.
    [63] AKIKAWA H, AJIMURA S, CHRIEN R E, et al. Phys Rev Lett, 2002, 88:082501.
    [64] DATAR V M, CHAKRABARTY D R, SURESH K, et al. Phys Rev Lett, 2013, 111:062502.
    [65] YU Youwen, MOTOBA T, BANDŌ H. Prog Theor Phys, 1986, 76:861.
    [66] STONE N J. At Data Nucl Data Tables, 2016, 111-112:1.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(956) PDF downloads(116) Cited by()

Proportional views

Study of ∧ Hypernuclei Using the Beyond-mean-field Approach with Skyrme-type N∧ Interaction

doi: 10.11804/NuclPhysRev.35.04.409
Funds:  National Natural Science Foundation of China(11775081,11547044); Natural Science Foundation of Shanghai, China(17ZR1408900)

Abstract: The beyond-mean-field Skyrme-Hartree-Fock approach is adopted to investigate the properties of 9Be, ∧∧10Be, 13C and 21Ne. The nucleon-nucleon (NN) interaction SLy4 and the nucleon-hyperon(N∧) interaction Skyrme-type SLL4 are used. The spin-orbit force of hyperon is included to show the spin-orbit splitting and non-crossing effect with BCS method to deal with pairing force. Energies of different configurations, such as 12C⊗∧[000]1/2+, 12C⊗∧[110]1/2-, 12C⊗∧[101]3/2-, 12C⊗∧[101]1/2-, 8Be⊗∧[000]1/2+, 8Be⊗∧[110]1/2-, 8 Be⊗∧[101]3/2- and 8Be⊗∧[101]1/2- are given and used to study the effects of ∧ occupying different orbitals. The calculated energy spectra, including both positive-and negative-parity levels, are given and compared to the experimental data. The observed positive-parity spin-doublet (3/2+,5/2+) are successfully reproduced, but the energy difference needs further investigation. The two well known band structures corresponding to the genuine hypernuclear states and the 9Be-analog states are also obtained and compared with the observed ones. The shrinkage effect of ∧ occupying ∧[000]1/2+ is investigated through the density distributions of nuclear core. And finally the calculation results of 21Ne are given and compared with the results of RMF method, which are nearly the same but with differences in some details.

CHEN Chaofeng, ZHOU Xianrong, CUI Jiwei, LI Wenying. Study of ∧ Hypernuclei Using the Beyond-mean-field Approach with Skyrme-type N∧ Interaction[J]. Nuclear Physics Review, 2018, 35(4): 409-419. doi: 10.11804/NuclPhysRev.35.04.409
Citation: CHEN Chaofeng, ZHOU Xianrong, CUI Jiwei, LI Wenying. Study of ∧ Hypernuclei Using the Beyond-mean-field Approach with Skyrme-type N∧ Interaction[J]. Nuclear Physics Review, 2018, 35(4): 409-419. doi: 10.11804/NuclPhysRev.35.04.409
Reference (66)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return