Advanced Search

ZHAO Jie, TU Zhoudunming, WANG Fuqiang. Status of the Chiral Magnetic Effect Search in Relativistic Heavy-ion Collisions[J]. Nuclear Physics Review, 2018, 35(3): 225-242. doi: 10.11804/NuclPhysRev.35.03.225
Citation: ZHAO Jie, TU Zhoudunming, WANG Fuqiang. Status of the Chiral Magnetic Effect Search in Relativistic Heavy-ion Collisions[J]. Nuclear Physics Review, 2018, 35(3): 225-242. doi: 10.11804/NuclPhysRev.35.03.225

Status of the Chiral Magnetic Effect Search in Relativistic Heavy-ion Collisions

doi: 10.11804/NuclPhysRev.35.03.225
Funds:  U.S. Department of Energy (de-sc0012910); Early Career Award (Contract No. de-sc0012185) from the U.S. Department of Energy Office of Science; Robert Welch Foundation (C-1845); Alfred P. Sloan Research Fellowship (FR-2015-65911); National Natural Science Foundation of China (11747312)
  • Received Date: 2018-07-04
  • Rev Recd Date: 2018-07-23
  • Publish Date: 2018-09-20
  • Quark interactions with topological gluon fields in QCD can yield local P and CP violations which could explain the matter-antimatter asymmetry in our universe. Effects of P and CP violations can result in charge separation under a strong magnetic field, a phenomenon called the chiral magnetic effect (CME). Experimental measurements of the CME-induced charge separation in heavy-ion collisions are dominated by physics backgrounds. Major theoretical and experimental efforts have been devoted to eliminating or reducing those backgrounds. We review the current status of these efforts in the search for the CME in heavy-ion collisions.
  • [1] LEE T D. Phys Rev D, 1973, 8:1226.
    [2] LEE T D,WICK G C. Phys Rev D, 1974, 9:2291.
    [3] MORLEY P D, SCHMIDT I A. Z Phys C, 1985, 26:627.
    [4] KHARZEEV D, PISARSKI R D, TYTGAT M H G. Phys Rev Lett, 1998, 81:512.
    [5] KHARZEEV D. Phys Lett B, 2006, 633:260.
    [6] KHARZEEV D E, MCLERRAN L D, WARRINGA H J. Nucl Phys A, 2008, 803:227.
    [7] FUKUSHIMA K, KHARZEEV D E, WARRINGA H J. Phys Rev D, 2008, 78:074033.
    [8] KHARZEEV D E, LIAO J, VOLOSHIN S A, et al. Prog Part Nucl Phys, 2016, 88:1.
    [9] DINE M, KUSENKO A. Rev Mod Phys, 2003, 76:1; KUSENKO A. Rev Mod Phys, 2003, 76:1.
    [10] ADAMS J(STAR). Nucl Phys A, 2005, 757:102.
    [11] ADCOX K(PHENIX). Nucl Phys A, 2005, 757:184.
    [12] ARSENE I(BRAHMS). Nucl Phys A, 2005, 757:1.
    [13] BACK B B(PHOBOS). Nucl Phys A, 2005, 757:28.
    [14] MULLER B, SCHUKRAFT J, WYSLOUCH B. Ann Rev Nucl Part Sci, 2012, 62:361.
    [15] MULLER B, SCHUKRAFT A, Phys Rev C, 2010, 82:057902.
    [16] KHARZEEV D, PISARSKI R D. Phys Rev D, 2000, 61:111901.
    [17] REISDORF W, RITTER H. Ann Rev Nucl Part Sci, 1997, 47:612. (1997).
    [18] VOLOSHIN S A. Phys Rev C, 2004, 70:057901.
    [19] PRATT S, SCHLICHTING S, GAVIN S. Phys Rev C, 2011, 84:024909.
    [20] BZDAK A, KOCH V, LIAO J. Phys Rev C, 2011, 83:014905.
    [21] ABELEV B I(STAR). Phys Rev C, 2010, 81:054908.
    [22] ABELEV B I(STAR). Phys Rev Lett, 2009, 103:251601.
    [23] ADAMCZYK L(STAR). Phys Rev C, 2013, 88:064911.
    [24] ADAMCZYK L(STAR). Phys Rev Lett, 2014, 113:052302.
    [25] ABELEV B I(ALICE). Phys Rev Lett, 2013, 110:012301.
    [26] AJITANAND R A L N N, ESUMI S (PHENIX). Proc of the RBRC Workshops, 2010, 96:230.
    [27] WANG F. Phys Rev C, 2010, 81:064902.
    [28] ZHAO J. Int J Mod Phys A, 2018, 33:1830010.
    [29] WANG F, ZHAO J. Phys Rev C, 2017, 95:051901.
    [30] SCHLICHTING S, PRATT S. Phys Rev C, 2011, 83:014913.
    [31] ZHANG B, KO C M, LI B A, et al. Phys Rev C, 2000, 61:067901.
    [32] LIN Z W, KO C M. Phys Rev C, 2002, 65:034904.
    [33] LIN Z W, KO C M, LI B A, et al. Phys Rev C, 2005, 72:064901.
    [34] MA G L, ZHANG B. Phys Lett B, 2011, 700:39.
    [35] SHOU Q Y, MA G L, MA Y G. Phys Rev C, 2014, 90:047901.
    [36] KHACHATRYAN V(CMS). Phys Rev Lett, 2017, 118:122301.
    [37] ALVER B(PHOBOS). Phys Rev Lett, 2007, 98:242302.
    [38] BELMON R, NAGLE J. L. Phys Rev C, 2017, 96:024901.
    [39] TU Z(CMS). Nucl Phys A, 2017, 967:744.
    [40] ZHAO J(STAR). EPJ Web Conf, 2018, 172:01005.
    [41] ZHAO J(STAR). 21st International Conference on Particles and Nuclei (PANIC 17), Beijing, China, September 1-5, 2017, arXiv:1802.03283[nucl-ex].
    [42] ADAMCZYK L(STAR). Phys Rev C, 2014, 89:044908.
    [43] WEN F, BRYON J, WEN L, et al. Chin Phys C, 2018, 42:014001.
    [44] SCHUKRAFT J, TIMMINS A, VOLOSHIN S A. Phys Lett B, 2013, 719:394.
    [45] ACHARYA S(ALICE). Phys Lett B, 2018, 777:151.
    [46] SIRUNYAN A(CMS). M. Phys Rev C, 2018, 97:044912.
    [47] XU H J, ZHAO J, WANG X, et al. Chin Phys C, 2018, 42:084103.
    [48] XU H J, WANG X, LI H, et al. Phys Rev Lett, 2018, 121:022301.
    [49] ZHAO J(STAR). 27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018), Venezia, Italy, 13-19 May 2018. https://indico.cern.ch/event/656452/contributions/2869775/.
    [50] ZHAO J, LI H, WANG F. arXiv:1705.05410[nucl-ex].
    [51] WANG F. 27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018), Venezia, Italy, 13-19 May 2018. https://indico.cern.ch/event/656452/contributions/2869777/.
    [52] BZDAK A,KOCH V, LIAO J. Lect Notes Phys, 2013, 871:503.
    [53] WEN L. Nucl Phys A, 2017, 967:756.
    [54] AJITANAND N N, LACEY R A, TARANENKO A, et al. Phys Rev C, 2011, 83:011901.
    [55] MAGDY N, SHI S, LIAO J, et al. Phys Rev C, 2018, 97:061901.
    [56] BOZEK P. Phys Rev C, 2018, 97:034907.
    [57] FENG Y, ZHAO J, WANG F. Phys. Rev. C, 2018, 98:034904.
    [58] VOLOSHIN S A. Phys Rev Lett, 2010, 105:172301.
    [59] WANG G(STAR). Nucl Phys A, 2013, 904-905:248c.
    [60] TRIBEDY P(STAR). Nucl Phys A, 2017, 967:740.
    [61] TU B(STAR). Poster, 25th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2015), Kobe, Japan. https://drupal.star.bnl.gov/STAR/presentations/qm2015/biao-tu, (2015).
    [62] ZHAO J(STAR). Proceedings, 46th International Sym-posium on Multiparticle Dynamics (ISMD 2016), Jeju Island, South Korea, August 29-September 2, 2016, EPJ Web Conf, 2017, 141:01010.
    [63] ADLER C(STAR). Phys Rev C, 2002, 66:034904.
    [64] WANG G(STAR). Talk, 4th Workshop on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions, March 19-22, 2018, Florence, Italy. https://agenda.infn.it/getFile.py/access?contribId=46&resId=0&materialId=slides&confId=13907, (2018).
    [65] BZDAK A. Phys Rev C, 2012, 85:044919.
    [66] HORI Y, GUNJI T. HAMAGAKI H, et al. arXiv:1208.0603[nucl-th].
    [67] MILLER M L,REYGERS K,SANDERS S J, et al. Ann Rev Nucl Part Sci, 2007, 57:205.
    [68] DRESCHER H J, NARA Y. Phys Rev C, 2007, 76:041903.
    [69] ALBACETE J L, DUMITRU A. arXiv:1011.5161[hep-ph].
    [70] NIEMI H, ESKOLA K J, PAATELAINEN R. Phys Rev C, 2016, 93:024907.
    [71] FELDMAN G J, COUSINS R D. Phys Rev D, 1998, 57:3873.
    [72] XU H J, PANG L,WANG Q. Phys Rev C, 2014, 89:064902.
    [73] ZHU X, ZHOU Y, XU H, et al. Phys Rev C, 2017, 95:044902.
    [74] ABELEV B(ALICE). Phys Rev Lett, 2013, 111:232302.
    [75] ADAMCZYK L(STAR). Phys Rev Lett, 2017, 118:012301(2017).
    [76] OLIVE K A. Chin Phys C, 2014, 38:090001.
    [77] ADAMS J(STAR). Phys Rev Lett, 2004, 92:092301.
    [78] SHI S, JIANG Y, LILLESKOV E, et al. Annals Phys, 2018, 394:50.
    [79] DENG W T, HUANG X G, MA G L, et al. Phys Rev C, 2016, 94:041901.
    [80] HUANG X G, DENG W T, MA G L, et al. Nucl Phys A, 2017, 967:736.
    [81] ENG W T, HUANG X G. Phys Rev C, 2012, 85:044907.
    [82] CHABANAT E, BONCHE P, HAENSEL P, et al. Nucl Phys A, 1998, 635:231.
    [83] WANG X B, FRIAR J L, HAYES A C. Phys Rev C, 2016, 94:034314.
    [84] BENDER M, HEENEN P H, REINHARD P G. Rev Mod Phys, 2003, 75:121.
    [85] RING P, SCHUCK P. THe Nuclear Many-body Problem, Texts and Monographs in Physics[M]. Berlin:Springer, 1980.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2010) PDF downloads(197) Cited by()

Proportional views

Status of the Chiral Magnetic Effect Search in Relativistic Heavy-ion Collisions

doi: 10.11804/NuclPhysRev.35.03.225
Funds:  U.S. Department of Energy (de-sc0012910); Early Career Award (Contract No. de-sc0012185) from the U.S. Department of Energy Office of Science; Robert Welch Foundation (C-1845); Alfred P. Sloan Research Fellowship (FR-2015-65911); National Natural Science Foundation of China (11747312)

Abstract: Quark interactions with topological gluon fields in QCD can yield local P and CP violations which could explain the matter-antimatter asymmetry in our universe. Effects of P and CP violations can result in charge separation under a strong magnetic field, a phenomenon called the chiral magnetic effect (CME). Experimental measurements of the CME-induced charge separation in heavy-ion collisions are dominated by physics backgrounds. Major theoretical and experimental efforts have been devoted to eliminating or reducing those backgrounds. We review the current status of these efforts in the search for the CME in heavy-ion collisions.

ZHAO Jie, TU Zhoudunming, WANG Fuqiang. Status of the Chiral Magnetic Effect Search in Relativistic Heavy-ion Collisions[J]. Nuclear Physics Review, 2018, 35(3): 225-242. doi: 10.11804/NuclPhysRev.35.03.225
Citation: ZHAO Jie, TU Zhoudunming, WANG Fuqiang. Status of the Chiral Magnetic Effect Search in Relativistic Heavy-ion Collisions[J]. Nuclear Physics Review, 2018, 35(3): 225-242. doi: 10.11804/NuclPhysRev.35.03.225
Reference (85)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return