Advanced Search

ZHANG Mingwu, XUE Yingli, LI Xin, LIU Junliang, YU Deyang, YANG Bian, WANG Wei, GUO Yipan, LI Xiaoxiao, YANG Liping, XI Wei, ZHU Xiaona, ZHANG Yuezhao, SHAO Caojie, CAI Xiaohong. Guiding Effect of Electron Beam by Grooved Insulating Parallel Plates[J]. Nuclear Physics Review, 2018, 35(2): 204-209. doi: 10.11804/NuclPhysRev.35.02.204
Citation: ZHANG Mingwu, XUE Yingli, LI Xin, LIU Junliang, YU Deyang, YANG Bian, WANG Wei, GUO Yipan, LI Xiaoxiao, YANG Liping, XI Wei, ZHU Xiaona, ZHANG Yuezhao, SHAO Caojie, CAI Xiaohong. Guiding Effect of Electron Beam by Grooved Insulating Parallel Plates[J]. Nuclear Physics Review, 2018, 35(2): 204-209. doi: 10.11804/NuclPhysRev.35.02.204

Guiding Effect of Electron Beam by Grooved Insulating Parallel Plates

doi: 10.11804/NuclPhysRev.35.02.204
Funds:  National Natural Science Foundation of China (11205224, 11275240, U1332206)
  • Received Date: 2017-11-21
  • Rev Recd Date: 2017-12-25
  • Publish Date: 2018-06-20
  • Adopting several grooved parallel plates made by different insulators, such as high-purity fused quartz, Teflon, Bakelite and POM (Polyformaldehyde), and further adjusting the electron beam current in a wide range (tens of pA~tens of nA), the discharging mechanism in the self-organizing charge and discharge processes of electron guiding was investigated and discussed by using 1 500 eV incident electron beam. The present results show that, the electron guiding behaviors are obviously existing when such electron beam is transmitted through the above grooved insulating parallel plates, which are independent on beam current and insulators. Our results suggest that, the possibilities of the accumulated charges on inner-surface of grooved parallel plates linearly discharging through surface and bulk resistances of plates into the ground should be excluded.
  • [1] STOLTERFOHT N, BREMER J H, HOFFMANN V, et al. Phys Rev Lett, 2002, 88:133201.
    [2] IKEDA T, KANAI K, KOJIMA T M, et al. Appl Phys Lett, 2006, 89:163502.
    [3] KOWARIK G, BERECZKY R G, AUMAYR F, et al. Nucl Instr Meth B, 2009, 267:2277.
    [4] GRUBER E, KOWARIK G, LADINIG F, et al. Phys Rev A, 2012, 86:062901.
    [5] STOLTERFOHT N, YAMAZAKI Y. Phys Rep, 2016, 629:107.
    [6] SKOG P, ZHANG H Q, SCHUCH R. Phys Rev Lett, 2008, 101:223202.
    [7] MILOSAVLJEVIĆA, VÍKOR G, PEŠIĆZ, et al. Phys Rev A, 2007, 75:030901(R).
    [8] DAS S, DASSANAYAKE B, WINKWORTH M, et al. Phys Rev A, 2007, 76:042716.
    [9] MILOSAVLJEVIĆA, JURETA J, VÍKOR G, et al. Europhys Lett, 2009, 86:23001.
    [10] DASSANAYAKE B S, DAS S, BERECZKY R J, et al. Phys Rev A, 2010, 81:020701(R).
    [11] MILOSAVLJEVIĆA, SCHIESSL K, LEMELL C, et al. Nucl Instr Meth B, 2012, 279:190.
    [12] SSHIESSL K, TÖKÉSI K, SOLLEDER B, et al. Phys Rev Lett, 2009, 102:163201.
    [13] DASSANAYAKE B S, BERECZKY R J, DAS S, et al. Phys Rev A, 2011, 83:012707.
    [14] KEERTHISINGHE D, DASSANAYAKE B S, WICKRAMARACHCHI S J, et al. Nucl Instr Meth B, 2013, 317:105.
    [15] XUE Y L, YU D Y, LIU J L, et al. Appl Phys Lett, 2015, 107:254102.
    [16] ZHANG Mingwu, WANG Wwi, XUE Yinli, et al. Nucl Phys Rev, 2012, 29(2):184. (in Chinese). (张明武, 王伟, 薛迎利, 等. 原子核物理评论, 2012, 29(2):184.)
    [17] WANG W, CHEN J, YU D Y, et al. Phys Scr, 2011, T144:014023.
    [18] WANG Wei, CHEN Jin, YU Deyang, et al. High Power Laser and Particle Beams, 2011, 23(4):1065. (in Chinese). (王伟, 陈婧, 于得洋, 等. 强激光与粒子束, 2011, 23(4):1065.)
    [19] WANG W, QI D J, YU D Y, et al. J Phys Conf Ser, 2009, 163:012093.
    [20] QI Dejun, YU Deyang, WANG Wei, et al. Nucl Phys Rev, 2008, 25(4):375. (in Chinese). (漆德君, 于得洋, 王伟, 等. 原子核物理评论, 2008, 25(4):375.)
    [21] DE OLIVEIRA L N, GROSS B. J Appl Phys, 1975, 46:3132.
    [22] IKEDA T, IWAI Y, KOJIMA T M, et al. Nucl Instr Meth B, 2012, 287:31.
    [23] LIU J L, YU D Y, RUAN F F, et al. Rev Sci Instrum, 2013, 84:036107.
    [24] YU D Y, LIU J L, XUE Y L, et al. Rev Sci Instrum, 2015, 86:115102.
    [25] WU Y H, YU D Y, XUE Y L, et al. Nucl Instr Meth B, 2014, 334:59.
    [26] CAZAUX J. Scanning, 2014, 26:181.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1165) PDF downloads(95) Cited by()

Proportional views

Guiding Effect of Electron Beam by Grooved Insulating Parallel Plates

doi: 10.11804/NuclPhysRev.35.02.204
Funds:  National Natural Science Foundation of China (11205224, 11275240, U1332206)

Abstract: Adopting several grooved parallel plates made by different insulators, such as high-purity fused quartz, Teflon, Bakelite and POM (Polyformaldehyde), and further adjusting the electron beam current in a wide range (tens of pA~tens of nA), the discharging mechanism in the self-organizing charge and discharge processes of electron guiding was investigated and discussed by using 1 500 eV incident electron beam. The present results show that, the electron guiding behaviors are obviously existing when such electron beam is transmitted through the above grooved insulating parallel plates, which are independent on beam current and insulators. Our results suggest that, the possibilities of the accumulated charges on inner-surface of grooved parallel plates linearly discharging through surface and bulk resistances of plates into the ground should be excluded.

ZHANG Mingwu, XUE Yingli, LI Xin, LIU Junliang, YU Deyang, YANG Bian, WANG Wei, GUO Yipan, LI Xiaoxiao, YANG Liping, XI Wei, ZHU Xiaona, ZHANG Yuezhao, SHAO Caojie, CAI Xiaohong. Guiding Effect of Electron Beam by Grooved Insulating Parallel Plates[J]. Nuclear Physics Review, 2018, 35(2): 204-209. doi: 10.11804/NuclPhysRev.35.02.204
Citation: ZHANG Mingwu, XUE Yingli, LI Xin, LIU Junliang, YU Deyang, YANG Bian, WANG Wei, GUO Yipan, LI Xiaoxiao, YANG Liping, XI Wei, ZHU Xiaona, ZHANG Yuezhao, SHAO Caojie, CAI Xiaohong. Guiding Effect of Electron Beam by Grooved Insulating Parallel Plates[J]. Nuclear Physics Review, 2018, 35(2): 204-209. doi: 10.11804/NuclPhysRev.35.02.204
Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return