Advanced Search
Volume 34 Issue 3
Jul.  2017
Turn off MathJax
Article Contents

SONG Ligang, ZHU Te, CAO Xingzhong, ZHANG Rengang, KUANG Peng, JIN Shuoxue, ZHANG Peng, GONG Yihao, WANG Baoyi. Effect of Sulfurization Temperature on the Growth Quality of ZnS Thin Film[J]. Nuclear Physics Review, 2017, 34(3): 651-655. doi: 10.11804/NuclPhysRev.34.03.651
Citation: SONG Ligang, ZHU Te, CAO Xingzhong, ZHANG Rengang, KUANG Peng, JIN Shuoxue, ZHANG Peng, GONG Yihao, WANG Baoyi. Effect of Sulfurization Temperature on the Growth Quality of ZnS Thin Film[J]. Nuclear Physics Review, 2017, 34(3): 651-655. doi: 10.11804/NuclPhysRev.34.03.651

Effect of Sulfurization Temperature on the Growth Quality of ZnS Thin Film

doi: 10.11804/NuclPhysRev.34.03.651
Funds:  National Natural Science Foundation of China (11505205, 11505192); Educational Department of Hubei Province(D20121109)
More Information
  • Corresponding author: 10.11804/NuclPhysRev.34.03.651
  • Received Date: 2016-12-06
  • Rev Recd Date: 2017-04-10
  • Publish Date: 2017-07-18
  • ZnS thin films have been prepared by sulfurizing zinc thin films deposited on glass substrate by magnetron sputtering for two hours. The microstructure defects, crystallizations and surface morphology of zinc films sulfurized at different temperature were analyzed by PAT (positron annihilation technique), XRD(X-ray diffraction) and SEM (Scanning electron microscopy), respectively. For analyzing the structure defect of four samples with different sulfurization temperature, PAT has been used to obtain the relative concentration of defects. With the positron energy range of 1.5~4.5 keV, the S parameter of ZnS films is minimum. It demonstrates that ZnS films produced at 445℃ have the minimum structural defect concentration and the highest density. XRD results show that films are blende structure with the preference of (111) orientation above 445℃. And from the result of SEM, because of ZnS films recrystallization, the crystal grains obviously become large and dense at 445℃.
  • [1] WANG Caifeng, HU Bo, LI Weibing, et al. Optik, 2014, 125(1):554.
    [2] BENYAHIA K, BENHAYA A, AIDA M S. Journal of Semiconductors, 2015, 30:103001.
    [3] NAGHAVI N, ABOU-RAS D, ALLSOP N, et al. Progress In Photovoltaics, 2010, 18(6):411.
    [4] HWANG D, AHN J, HUI K. Nanoscale Res Lett, 2012, 7:1.
    [5] HUA Yinqun, YU Jie, CHEN Ruifang, et al. Adv Mater Res-Switz, 2011, 194:2259.
    [6] MIAO Yiming, DENG Jinxiang, DUAN Ping, et al. Vaccum, 2015, 52(1):27. (in Chinese) (苗一鸣, 邓金祥, 段苹, 等. 真空, 2015, 52(1):27.)
    [7] XIE Jing, LI Bing, LI Yuanjie, et al. Acta Phys Sin, 2010, 59(8):5749. (in Chinese) (谢婧, 黎兵, 李愿杰, 等. 物理学报, 2010, 59(8):5749.)
    [8] LIU Zhaohong, CHEN Mouzhi, LIN Aiqing, et al. Semiconductor Information, 1998, 35(1):45. (in Chinese) (柳兆洪, 陈谋智, 林爱清, 等. 半导体情报, 1998, 35(1):45.)
    [9] LIU Zhaohong, LIU Ruitang, SUN shunong, et al. Research & Progress of SSE, 1997, 17(4):347. (in Chinese) (柳兆洪, 刘瑞堂, 孙书农, 等. 固体电子学研究与进展, 1997, 17(4):347.)
    [10] ZHANG Lihong, CHENGBin, Zhang Jie, et al. Sci Sin:Phys Mech Astron, 2012, 42:1217. (in Chinese) (张礼红, 成斌, 张杰, 等. 中国科学:物理学力学天文学, 2012, 42:1217.)
    [11] XIE Qiyun, WU Liaoshan. Physics, 2012, 41(11):727. (in Chinese) (解其云, 吴小山. 物理, 2012, 41(11):727.)
    [12] CHEN Li, XU Jun, CHEN Jing. Science China:Earth Sciences, 2015, 45(9):1347. (in Chinese) (陈莉, 徐军, 陈晶. 中国科学:地球科学, 2015, 45(9):1347.)
    [13] PATHAK T K, KUMAR V, PUROHIT L P, et al. Physica E, 2016, 84:530.
    [14] ZHONG Weizhuo, LUO Haosu, HUA Sukun, et al. Journal of Synthetic Crystals, 2004, 33(4):471. (in Chinese) (仲维卓, 罗豪甦, 华素坤, 等. 人工晶体学报, 2004, 33(4):471.)
    [15] HAN Rongdian, YE Bangjiao, WENG Huimin, et al. Progress in Physics, 1999, 19(3):306. (in Chinese) (韩荣典, 叶邦角, 翁惠民, 等. 物理学进展, 1999, 19(3):306.)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1365) PDF downloads(99) Cited by()

Proportional views

Effect of Sulfurization Temperature on the Growth Quality of ZnS Thin Film

doi: 10.11804/NuclPhysRev.34.03.651
Funds:  National Natural Science Foundation of China (11505205, 11505192); Educational Department of Hubei Province(D20121109)
    Corresponding author: 10.11804/NuclPhysRev.34.03.651

Abstract: ZnS thin films have been prepared by sulfurizing zinc thin films deposited on glass substrate by magnetron sputtering for two hours. The microstructure defects, crystallizations and surface morphology of zinc films sulfurized at different temperature were analyzed by PAT (positron annihilation technique), XRD(X-ray diffraction) and SEM (Scanning electron microscopy), respectively. For analyzing the structure defect of four samples with different sulfurization temperature, PAT has been used to obtain the relative concentration of defects. With the positron energy range of 1.5~4.5 keV, the S parameter of ZnS films is minimum. It demonstrates that ZnS films produced at 445℃ have the minimum structural defect concentration and the highest density. XRD results show that films are blende structure with the preference of (111) orientation above 445℃. And from the result of SEM, because of ZnS films recrystallization, the crystal grains obviously become large and dense at 445℃.

SONG Ligang, ZHU Te, CAO Xingzhong, ZHANG Rengang, KUANG Peng, JIN Shuoxue, ZHANG Peng, GONG Yihao, WANG Baoyi. Effect of Sulfurization Temperature on the Growth Quality of ZnS Thin Film[J]. Nuclear Physics Review, 2017, 34(3): 651-655. doi: 10.11804/NuclPhysRev.34.03.651
Citation: SONG Ligang, ZHU Te, CAO Xingzhong, ZHANG Rengang, KUANG Peng, JIN Shuoxue, ZHANG Peng, GONG Yihao, WANG Baoyi. Effect of Sulfurization Temperature on the Growth Quality of ZnS Thin Film[J]. Nuclear Physics Review, 2017, 34(3): 651-655. doi: 10.11804/NuclPhysRev.34.03.651
Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return