Advanced Search
Volume 34 Issue 3
Jul.  2017
Turn off MathJax
Article Contents

WU Xuhao, SHEN Hong. Hadron-quark Phase Transition with Finite-size Effect in Neutron Stars[J]. Nuclear Physics Review, 2017, 34(3): 509-513. doi: 10.11804/NuclPhysRev.34.03.509
Citation: WU Xuhao, SHEN Hong. Hadron-quark Phase Transition with Finite-size Effect in Neutron Stars[J]. Nuclear Physics Review, 2017, 34(3): 509-513. doi: 10.11804/NuclPhysRev.34.03.509

Hadron-quark Phase Transition with Finite-size Effect in Neutron Stars

doi: 10.11804/NuclPhysRev.34.03.509
Funds:  National Natural Science Foundation of China(11375089, 11675083)
More Information
  • Corresponding author: 10.11804/NuclPhysRev.34.03.509
  • Received Date: 2016-11-20
  • Rev Recd Date: 2017-04-15
  • Publish Date: 2017-07-18
  • It is generally considered that hadron matter may undergo a deconfinement phase transition becoming quark matter at very high density in massive neutron stars. This hadron-quark phase transition has important impact on neutron stars, which has received much attention. We consider finite-size effect in this phase transition process, which contains the impact of Coulomb energy and surface energy. By including this effect, the mixed phase forms the pasta structures. The equilibrium conditions for coexisting hadronic and quark phases are derived by minimizing the total energy including the surface and Coulomb contributions. We employ the relativistic mean-field(RMF) model to describe the hadronic phase, while the Nambu-Jona-Lasinio(NJL) model is used for the quark phase. We conclude that the finite-size effect will raise the stiffness of EOS, and then increase the maximum mass of neutron stars, which depend on the value of surface tension. Our results show that finite-size effects can significantly reduce the region of the mixed phase, and the results lie between those from the Gibbs and Maxwell constructions. We show that a massive star may contain a mixed phase core and its size depends on the surface tension of the hadron-quark interface.
  • [1] GLENDENNING N K. Phys Rep, 2001, 342:393.
    [2] HEISELBERG H, HJORTH-JENSEN M. Phys Rep, 2000, 328:237.
    [3] WEBER F. Prog Part Nucl Phys, 2005, 54:193.
    [4] GLENDENNING N K. Phys Rev D, 1992, 46:1274.
    [5] SCHERTLER K, LEUPOLD S, SCHAFFNER-BIELICH J. Phys Rev C, 1999, 60:025801.
    [6] SCHERTLER K, GREINER C, SCHAFFNER-BIELICH J, et al. Nucl Phys A, 2000, 677:463.
    [7] STEINER A W, PRAKASH M, LATTIMER J M. Phys Lett B, 2000, 486:239.
    [8] BURGIO G F, BALDO M, SAHU P K, et al. Phys Rev C, 2002, 66:025802.
    [9] MENEZES D P, PROVIDÊNCIA C. Phys Rev C, 2003, 68:035804.
    [10] SHARMA B K, PANDA P K, PATRA S K. Phys Rev C, 2007, 75:035808.
    [11] YANG F, SHEN H. Phys Rev C, 2008, 77:025801.
    [12] XU J, CHEN L W, KO C M, et al. Phys Rev C, 2010, 81:055803.
    [13] CHEN H, BURGIO G F, SCHULZE H -J, et al. Astron Astrophys, 2013, 551:A13.
    [14] ORSARIA M, RODRIGUES H, WEBER F, et al. Phys Rev C, 2014, 89:015806.
    [15] HEISELBERG H, PETHICK C J, STAUBO E F. Phys Rev Lett, 1993, 70:1355.
    [16] ENDO T, MARUYAMA T, CHIBA S, et al. Prog Theor Phys, 2006, 115:337.
    [17] MARUYAMA T, CHIBA S, SCHULZE H -J, et al. Phys Rev D, 2007, 76:123015.
    [18] YASUTAKE N, ŁAstowiecki R, BENIĆ S, et al. Phys Rev C, 2014, 89:065803.
    [19] GLENDENNING N K, PEI S. Phys Rev C, 1995, 52:2250.
    [20] CHRISTIANSEN M B, GLENDENNING N K. Phys Rev C, 1997, 56:2858.
    [21] VOSKRESENSKY D N, YASUHIRA M, TATSUMI T. Nucl Phys A, 2003, 723:291.
    [22] LATTIMER J M, SWESTY F D. Nucl Phys A, 1991, 535:331.
    [23] BAO S S, HU J N, ZHANG Z W, et al. Phys Rev C, 2014, 90:045802.
    [24] BERGER M S, JAFFE R L. Phys Rev C, 1987, 35:213; Phys Rev C, 1991, 44:566.
    [25] LUGONES G, GRUNFELD A G, AJMI M A. Phys Rev C, 2013, 88:045803.
    [26] PINTO M B, KOCH V, RANDRUP J. Phys Rev C, 2012, 86:025203.
    [27] DEMOREST P B, PENNUCCI T, RANSON S M, et al. Nature, 2010, 467:1081; FONSECA E, PENNUCCI T T, ELLIS J A, et al. Astrophys J, 2016, 832:167.
    [28] ANTONIADIS J, FREIRE P C C, WEX N, et al. Science, 2013, 340:1233232.
    [29] REHBERG P, KLEVANSKY S P, HÜFner J. Phys Rev C, 1996, 53:410.
    [30] BAYM G, BETH H A E, PETHICK C J. Nucl Phys A, 1971, 175:225.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1998) PDF downloads(129) Cited by()

Proportional views

Hadron-quark Phase Transition with Finite-size Effect in Neutron Stars

doi: 10.11804/NuclPhysRev.34.03.509
Funds:  National Natural Science Foundation of China(11375089, 11675083)
    Corresponding author: 10.11804/NuclPhysRev.34.03.509

Abstract: It is generally considered that hadron matter may undergo a deconfinement phase transition becoming quark matter at very high density in massive neutron stars. This hadron-quark phase transition has important impact on neutron stars, which has received much attention. We consider finite-size effect in this phase transition process, which contains the impact of Coulomb energy and surface energy. By including this effect, the mixed phase forms the pasta structures. The equilibrium conditions for coexisting hadronic and quark phases are derived by minimizing the total energy including the surface and Coulomb contributions. We employ the relativistic mean-field(RMF) model to describe the hadronic phase, while the Nambu-Jona-Lasinio(NJL) model is used for the quark phase. We conclude that the finite-size effect will raise the stiffness of EOS, and then increase the maximum mass of neutron stars, which depend on the value of surface tension. Our results show that finite-size effects can significantly reduce the region of the mixed phase, and the results lie between those from the Gibbs and Maxwell constructions. We show that a massive star may contain a mixed phase core and its size depends on the surface tension of the hadron-quark interface.

WU Xuhao, SHEN Hong. Hadron-quark Phase Transition with Finite-size Effect in Neutron Stars[J]. Nuclear Physics Review, 2017, 34(3): 509-513. doi: 10.11804/NuclPhysRev.34.03.509
Citation: WU Xuhao, SHEN Hong. Hadron-quark Phase Transition with Finite-size Effect in Neutron Stars[J]. Nuclear Physics Review, 2017, 34(3): 509-513. doi: 10.11804/NuclPhysRev.34.03.509
Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return