Advanced Search
Volume 34 Issue 3
Jul.  2017
Turn off MathJax
Article Contents

MENG Haiyan, WANG Hualei, CHAI Qingzhen, ZHANG Sha, YANG Jie, LIU Minliang. Possible Properties on Nuclear Shape and Stiffness Evolution:A Systematic Analysis Based on Nuclear-Energy-Surface Calculations[J]. Nuclear Physics Review, 2017, 34(3): 481-487. doi: 10.11804/NuclPhysRev.34.03.481
Citation: MENG Haiyan, WANG Hualei, CHAI Qingzhen, ZHANG Sha, YANG Jie, LIU Minliang. Possible Properties on Nuclear Shape and Stiffness Evolution:A Systematic Analysis Based on Nuclear-Energy-Surface Calculations[J]. Nuclear Physics Review, 2017, 34(3): 481-487. doi: 10.11804/NuclPhysRev.34.03.481

Possible Properties on Nuclear Shape and Stiffness Evolution:A Systematic Analysis Based on Nuclear-Energy-Surface Calculations

doi: 10.11804/NuclPhysRev.34.03.481
Funds:  National Natural Science Foundation of China(11675148); Outstanding Young Talent Research Fund of Zhengzhou University (1521317002); Physics Research and Development Program of Zhengzhou University (32410017); Foundation and Advanced Technology Research Program of Henan Province (162300410222)
More Information
  • Corresponding author: 10.11804/NuclPhysRev.34.03.481
  • Received Date: 2016-10-30
  • Rev Recd Date: 2017-04-19
  • Publish Date: 2017-07-18
  • Nuclear shape and stiffness evolutions in even-even nuclei with 50 < Z < 82 are systematically analyzed in terms of the pairing-deformation self-consistent nuclear-energy-surface calculation in (β2,γ,β4) deformation space. Calculated equilibrium deformations are presented and compared with other theoretical predictions and available experimental data. The stiffness parameters Cβ and Cγ respectively related to quadrupole deformations β2 and γ are determined from the deformation energy curves, which are consistent with the observed low-lying β and/or γ bands. The stiffness evolution under rotation along the yrast line is briefly discussed, e.g., on the basis of the centipidelike E-GOS curves, showing an unnegligible vibration effect.
  • [1] BOHR A, MOTTELSON B R. Nuclear Structure[M]. Singapore:World Scientific Publishing, 1998.
    [2] FRAUENDORF S. Rev Mod Phys, 2001, 73:463.
    [3] YANG Q, WANG H L, LIU M L, et al. Phys Rev C, 2016, 94:024310.
    [4] YANG J, WANG H L, LIU M L, et al. Prog Theor Exp Phys, 2016, 063D03.
    [5] WANG H L, YANG J, LIU M L, et al. Phys Rev C, 2015, 92:024303.
    [6] WANG H L, ZHANG S, LIU M L, et al. Prog Theor Exp Phys, 2015, 073D03.
    [7] CHAI Q Z, WANG H L, YANG Q, et al. Chin Phys C, 2015, 39:024101.
    [8] YANG Q, WANG H L, CHAI Q Z, et al. Chin Phys C, 2015, 39:094102.
    [9] WANG H L, LIU H L, XU F R, et al. Prog Theor Phys, 2012, 128:363.
    [10] XU F R, WALKER P M, SHEIKH J A, et al. Phys Lett B, 1998, 435:257.
    [11] NAZAREWICZ W, LEANDER G A, DUDEK J. Nucl Phys A, 1987, 467:437.
    [12] SATU LA W, WYSS R, MAGIERSKI P. Nucl Phys A, 1994, 578:45.
    [13] MÖLLER P, NIX J R. Nucl Phys A, 1981, 361:117.
    [14] MYERS W D, SWIATECKI W J. Nucl Phys A, 1966, 81:1.
    [15] NAZAREWICZ W, RILLEY M A, GARRETT J D. Nucl Phys A, 1990, 512:61.
    [16] STRUTINSKY V M. Nucl Phys A, 1967, 95:420.
    [17] NAZAREWICZ W, DUDEK J, BENGTSSON R, et al. Nucl Phys A, 1985, 435:397.
    [18] CWIOK S, DUDEK J, NAZAREWICZ W, et al. Comp Phys Comm, 1987, 46:379.
    [19] PRADHAN H C, NOGAMI Y, LAW J. Nucl Phys A, 1973, 201:357.
    [20] BHAGWAT A, VIÑAS X, CENTELLES M, et al. Phys Rev C, 2010, 81:044321.
    [21] SATU LA W, WYSS R. Rep Prog Phys, 2005, 68:131, and references cited therein.
    [22] CASTEN R F, BRENNER D S, HAUSTEIN P E. Phys Rev Lett, 1987, 58:658.
    [23] FOULADI N, FOULADI J, SABRI H. Eur Phys J Plus, 2015, 130:112.
    [24] CASTEN R F. Phys Rev Lett, 1985, 54:1991.
    [25] CASTEN R F. Nucl Phys A, 1985, 443:1.
    [26] CASTEN R F, ZAMFIR N V. J Phys G:Nucl Part Phys, 1996, 22:1521.
    [27] MALLMANN C A. Phys Rev Lett, 1959, 2:507.
    [28] GUPTA J B. Int J Mod Phys E, 2013, 22:1350023.
    [29] IACHELLO F. Phys Rev Lett, 2001, 87:052502.
    [30] MÖLLER P, NIX J R, MYERS W D, et al. At Data Nucl Data Tables, 1995, 59:185.
    [31] RAMAN S, NESTOR C W, TIKKANEN P, et al. At Data Nucl Data Tables, 2001, 78:1.
    [32] DUDEK J, NAZAREWICZ W, OLANDERS P. Nucl Phys A, 1984, 420:285.
    [33] ANDERSSON G, LARSSON S E, LEANDER G, et al. Nucl Phys A, 1976, 268:205.
    [34] NAZAREWICZ W, OLANDERS P, RAGNARSSON I, et al. Nucl Phys A, 1984, 429:269.
    [35] BUTLER P A, NAZAREWICZ W. Rev Mod Phys, 1996, 68:349.
    [36] REGAN P H, BEAUSANG C W, ZAMFIR N V, et al. Phys Rev Lett, 2003, 90:152502.
    [37] XU F R, WYSS R, WALKER P M. Phys Rev C, 1999, 60:051301.
    [38] KIBÉDI T, DRACOULIS, BYRNE A P, DAVIDSON P M. Nucl Phys A, 2001, 688:669.
    [39] KIBÉDI T, DRACOULIS G D, BYRNE A P, et al. Nucl Phys A, 1994, 567:183.
    [40] DAVIDSON P M, DRACOULIS G D, KIBÉDI T. Nucl Phys A, 1999, 657:219.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1212) PDF downloads(128) Cited by()

Proportional views

Possible Properties on Nuclear Shape and Stiffness Evolution:A Systematic Analysis Based on Nuclear-Energy-Surface Calculations

doi: 10.11804/NuclPhysRev.34.03.481
Funds:  National Natural Science Foundation of China(11675148); Outstanding Young Talent Research Fund of Zhengzhou University (1521317002); Physics Research and Development Program of Zhengzhou University (32410017); Foundation and Advanced Technology Research Program of Henan Province (162300410222)
    Corresponding author: 10.11804/NuclPhysRev.34.03.481

Abstract: Nuclear shape and stiffness evolutions in even-even nuclei with 50 < Z < 82 are systematically analyzed in terms of the pairing-deformation self-consistent nuclear-energy-surface calculation in (β2,γ,β4) deformation space. Calculated equilibrium deformations are presented and compared with other theoretical predictions and available experimental data. The stiffness parameters Cβ and Cγ respectively related to quadrupole deformations β2 and γ are determined from the deformation energy curves, which are consistent with the observed low-lying β and/or γ bands. The stiffness evolution under rotation along the yrast line is briefly discussed, e.g., on the basis of the centipidelike E-GOS curves, showing an unnegligible vibration effect.

MENG Haiyan, WANG Hualei, CHAI Qingzhen, ZHANG Sha, YANG Jie, LIU Minliang. Possible Properties on Nuclear Shape and Stiffness Evolution:A Systematic Analysis Based on Nuclear-Energy-Surface Calculations[J]. Nuclear Physics Review, 2017, 34(3): 481-487. doi: 10.11804/NuclPhysRev.34.03.481
Citation: MENG Haiyan, WANG Hualei, CHAI Qingzhen, ZHANG Sha, YANG Jie, LIU Minliang. Possible Properties on Nuclear Shape and Stiffness Evolution:A Systematic Analysis Based on Nuclear-Energy-Surface Calculations[J]. Nuclear Physics Review, 2017, 34(3): 481-487. doi: 10.11804/NuclPhysRev.34.03.481
Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return