Advanced Search
Volume 34 Issue 3
Jul.  2017
Turn off MathJax
Article Contents

MENG Jie, WANG Yuanyuan, LI Zhiquan. Chiral Symmetry in Atomic Nucleus[J]. Nuclear Physics Review, 2017, 34(3): 310-317. doi: 10.11804/NuclPhysRev.34.03.310
Citation: MENG Jie, WANG Yuanyuan, LI Zhiquan. Chiral Symmetry in Atomic Nucleus[J]. Nuclear Physics Review, 2017, 34(3): 310-317. doi: 10.11804/NuclPhysRev.34.03.310

Chiral Symmetry in Atomic Nucleus

doi: 10.11804/NuclPhysRev.34.03.310
Funds:  Nalional Basic Research Program of China (973 Program) (2013CB834400); National Natural Science Foundation of China (11335002, 11461141002, 11621131001)
  • Received Date: 2016-12-07
  • Rev Recd Date: 2017-04-17
  • Publish Date: 2017-07-18
  • Symmetry and its breaking are basic scientific problems. Chiral symmetries are common in nature, for example, the macroscopic spiral arms of galaxies and the rotation of planets; the microscopic spirals of the mineral crystalline, the organic molecules and the elementary particles. The concept of chirality in atomic nuclei was first proposed in 1997. Since then many efforts have been made to understand chiral symmetry and its spontaneous breaking in atomic nuclei. Up to now, more than 30 candidates of chiral nuclei have been reported in the 80, 100, 130, and 190 mass regions. The concept of the chirality in atomic nuclei, the prediction, the signal, and the experimental verification of the chiral nuclei are briefly introduced; the recent theoretical and experimental progress are reviewed, in particular the existence of multiple chiral doublets (MχD), i.e., more than one pair of chiral doublet bands in one single nucleus; the simultaneous spontaneous breaking of chiral and reflection symmetry in the newly observed atomic nuclei is introduced, together with a prospect on the future study on nuclear chiral symmetry.
  • [1] ANDERSON P W. Science, 1972, 177(4047):393.
    [2] BOHR A, MOTTELSON B R. Nuclear structure[M]. New York:Benjamin, 1975.
    [3] FRAUENDORF S, MENG J. Nuclear Physics A, 1997, 617(2):131.
    [4] TWIN P J, NYAKÓ B M, NELSON A H, et al. Phys Rev Lett, 1986, 57(7):811.
    [5] HÜBEL H. Progress in Particle and Nuclear Physics, 2005, 54(1):1.
    [6] FRAUENDORF S. Nuclear Physics A, 1993, 557:259.
    [7] FRAUENDORF S, MENG J, REIF J. Proceedings of the Conference on Physics from Large γ-ray Detector Arrays[C]. 1994, 11:52.
    [8] NEFFGEN M, BALDSIEFEN G, FRAUENDORF S, et al. Nuclear Physics A, 1995, 595(4):499.
    [9] MENG J. Acta Physica Sinica, 1993, 42(3):368.(in Chinese) (孟杰. 物理学报, 1993, 42(3):368.)
    [10] FRAUENDORF S, MENG J. Zeitschrift für Physik A Hadrons and Nuclei, 1996, 356(1):263.
    [11] CLARK R M, ASZTALOS S J, BALDSIEFEN G, et al. Phys Rev Lett, 1997, 78(10):1868.
    [12] WANG S Y, ZHANG S Q, QI B, et al. Chinese Phys Lett, 2007, 24(3):664.
    [13] MENG J. Physics, 2009, 38(02):0(in Chinese) (孟杰. 物理, 2009, 38(02):0)
    [14] STAROSTA K, KOIKE T, CHIARA C J, et al. Phys Rev Lett, 2001, 86(6):971.
    [15] VOSS D. Science, 2001, 291(5506):962.
    [16] ZHU S, GARG U, NAYAK B K, et al. Phys Rev Lett, 2003, 91(13):132501.
    [17] VAMAN C, FOSSAN D B, KOIKE T, et al. Phys Rev Lett, 2004, 92(3):032501.
    [18] WANG S Y, QI B, LIU L, et al. Phys Lett B, 2011, 703(1):40.
    [19] DIMITROV V I, FRAUENDORF S, DÖNAU F. Phys Rev Lett, 2000, 84(25):5732.
    [20] KOIKE T, STAROSTA K, HAMAMOTO I. Phys Rev Lett, 2004, 93(17):172502.
    [21] OLBRATOWSKI P, DOBACZEWSKI J, DUDEK J, et al. Phys Rev Lett, 2004, 93(5):052501.
    [22] TONEV D, DE ANGELIS G, PETKOV P, et al. Phys Rev Lett, 2006, 96(5):052501.
    [23] PETRACHE C M, HAGEMANN G B, HAMAMOTO I, et al. Phys Rev Lett, 2006, 96(11):112502.
    [24] GRODNER E, SREBRNY J, PASTERNAK A A, et al. Phys Rev Lett, 2006, 97(17):172501.
    [25] LIU C, WANG S Y, BARK R A, et al. Phys Rev Lett, 2016, 116(11):112501.
    [26] ALCÁNTARA-NÚÑNEZ J A, OLIVEIRA J R B, CYBUL-SKA E W, et al.Phys Rev C, 2004, 69(2):024317.
    [27] LUO Y X, WU S C, GILAT J, et al. Phys Rev C, 2004, 69(2):024315.
    [28] JOSHI P, JENKINS D G, RADDON P M, et al. Phys Lett B, 2004, 595(1):135.
    [29] TIMÁR J, JOSHI P, STAROSTA K, et al. Phys Lett B, 2004, 598(3):178.
    [30] JOSHI P, WILKINSON A R, KOIKE T, et al. The European Physical Journal A-Hadrons and Nuclei, 2005, 24(1):23.
    [31] ZHU S J, HAMILTON J H, RAMAYYA A V, et al. The European Physical Journal A-Hadrons and Nuclei, 2005, 25(1):459.
    [32] TIMÁR J, VAMAN C, STAROSTA K, et al. Phys Rev C, 2006, 73(1):011301.
    [33] JOSHI P, CARPENTER M P, FOSSAN D B, et al. Phys Rev Lett, 2007, 98(10):102501.
    [34] TIMÁR J, KOIKE T, PIETRALLA N, et al.Phys Rev C, 2007, 76(2):024307.
    [35] SUZUKI T, RAINOVSKI G, KOIKE T, et al. Phys Rev C, 2008, 78(3):031302.
    [36] LUO Y X, ZHU S J, HAMILTON J H, et al. Phys Lett B, 2009, 670(4):307.
    [37] SETHI J, PALIT R, SAHA S, et al. Phys Lett B, 2013, 725(1):85.
    [38] TONEV D, YAVAHCHOVA M S, GOUTEV N, et al. Phys Rev Lett, 2014, 112(5):052501.
    [39] LIEDER E O, LIEDER R M, BARK R A, et al. Phys Rev Lett, 2014, 112(20):202502.
    [40] RATHER N, DATTA P, CHATTOPADHYAY S, et al. Phys Rev Lett, 2014, 112(20):202503.
    [41] KUTI I, CHEN Q B, TIMAR J, et al. Phys Rev Lett, 2014, 113(3):032501.
    [42] HE C Y, ZHANG B, ZHU L H, et al. Plasma Science and Technology, 2012, 14(6):518.
    [43] DING H B, ZHU S J, WANG J G, et al. Chin Phys Lett, 2010, 27(7):072501.
    [44] HARTLEY D J, RIEDINGER L L, RILEY M A, et al. Phys Rev C, 2001, 64(3):031304.
    [45] HECHT A A, BEAUSANG C W, ZYROMSKI K E, et al. Phys Rev C, 2001, 63(5):051302.
    [46] KOIKE T, STAROSTA K, CHIARA C J, et al. Phys Rev C, 2001, 63(6):061304.
    [47] BARK R A, BAXTER A M, BYRNE A P, et al. Nuclear Physics A, 2001, 691(3):577.
    [48] STAROSTA K, CHIARA C J, FOSSAN D B, et al. Phys Rev C, 2002, 65(4):044328.
    [49] MERGEL E, PETRACHE C M, LO BIANCO G, et al. The European Physical Journal A-Hadrons and Nuclei, 2002, 15(4):417.
    [50] LI X F, MA Y J, LIU Y Z, et al. Chin Phys Lett, 2002, 19(12):1779.
    [51] HECHT A A, BEAUSANG C W, AMRO H, et al. Phys Rev C, 2003, 68(5):054310.
    [52] KOIKE T, STAROSTA K, CHIARA C J, et al. Phys Rev C, 2003, 67(4):044319.
    [53] RAINOVSKI G, PAUL E S, CHANTLER H J, et al. Phys Rev C, 2003, 68(2):024318.
    [54] ROBERTS S P, AHN T, STAROSTA K, et al. Phys Rev C, 2003, 67(5):057301.
    [55] RAINOVSKI G, PAUL E S, CHANTLER H J, et al. Journal of Physics G:Nuclear and Particle Physics, 2003, 29(12):2763.
    [56] SIMONS A J, JOSHI P, JENKINS D G, et al. Journal of Physics G:Nuclear and Particle Physics, 2005, 31(7):541.
    [57] GRODNER E, SREBRNY J, PASTERNAK A A, et al. Phys Rev Lett, 2006, 97(17):172501.
    [58] WANG S Y, LIU Y Z, KOMATSUBARA T, et al. Phys Rev C, 2006, 74(1):017302.
    [59] MUKHOPADHYAY S, ALMEHED D, GARG U, et al. Phys Rev Lett, 2007, 99(17):172501.
    [60] TONEV D, DE ANGELIS G, BRANT S, et al. Phys Rev C, 2007, 76(4):044313.
    [61] ZHAO Y X, KOMATSUBARA T, MA Y J, et al. Chin Phys Lett, 2009, 26(8):082301.
    [62] GRODNER E, SANKOWSKA I, MOREK T, et al. Physics Letters B, 2011, 703(1):46.
    [63] TIMÁr J, STAROSTA K, KUTI I, et al. Phys Rev C, 2011, 84(4):044302.
    [64] MA K Y, LU J B, YANG D, et al. Phys Rev C, 2012, 85(3):037301.
    [65] PETRACHE C M, FRAUENDORF S, MATSUZAKI M, et al. Phys Rev C, 2012, 86(4):044321.
    [66] KUTI I, TIMÁr J, SOHLER D, et al. Phys Rev C, 2013, 87(4):044323.
    [67] AYANGEAKAA A D, GARG U, ANTHONY M D, et al. Phys Rev Lett, 2013, 110(17):172504.
    [68] BALABANSKI D L, DANCHEV M, HARTLEY D J, et al. Phys Rev C, 2004, 70(4):044305.
    [69] LAWRIE E A, VYMERS P A, LAWRIE J J, et al. Phys Rev C, 2008, 78(2):021305.
    [70] LAWRIE E A, VYMERS P A, VIEU C, et al. The European Physical Journal A, 2010, 45(1):39.
    [71] MASITENG P L, LAWRIE E A, RAMASHIDZHA T M, et al. Physics Letters B, 2013, 719(1):83.
    [72] MASITENG P L, LAWRIE E A, RAMASHIDZHA T M, et al. The European Physical Journal A, 2014, 50(7):1.
    [73] CHEN Q B. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2015, 46(1):12013.(in Chinese) (陈启博. 中国科学物理学力学天文学, 2015, 46(1):12013.)
    [74] QI B, ZHANG S Q, MENG J, et al. Phys Lett B, 2009, 675(2):175.
    [75] CHEN Q B, ZHANG S Q, ZHAO P W, et al. Phys Rev C, 2013, 87(2):024314.
    [76] CHEN Q B. Scientia Sinica Physica, Mechanica and Astronomica, 2016, 46(1):12013.
    [77] MENG J, TOKI H, ZHOU S G, et al. Progress in Particle and Nuclear Physics, 2006, 57(2):470.
    [78] MENG J, GUO J Y, LI J, et al. Progress in Physics, 2011, 31(4):199. (in Chinese) (孟杰, 郭建友, 李剑, 等. 物理学进展, 2011, 31(4):199.)
    [79] MENG J, PENG J, ZHANG S Q, et al. Frontiers of Physics, 2013, 8:55.
    [80] LIANG H Z, MENG J, ZHOU S G. Physics Reports, 2015, 570:1.
    [81] MENG J, ZHOU S G. Journal of Physics G:Nuclear and Particle Physics, 2015, 42(9):093101.
    [82] MENG J. Relativistic Density Functional for Nuclear Structure[M]. Singapore:World Scientific Publishing Company, 2016.
    [83] MENG J, PENG J, ZHANG S Q, et al. Phys Rev C, 2006, 73(3):037303.
    [84] PENG J, SAGAWA H, ZHANG S Q, et al. Phys Rev C, 2008, 77(2):024309.
    [85] YAO J M, QI B, ZHANG S Q, et al. Phys Rev C, 2009, 79(6):067302.
    [86] LI J, ZHANG S Q, MENG J. Phys Rev C, 2011, 83(3):037301.
    [87] http://kft.umcs.lublin.pl/wfj/2017/index.php/1st-circular/
    [88] MENG J, ZHAO P W. Physica Scripta, 2016, 91:053008.
    [89] CHEN F Q, CHEN Q B, LUO Y A, et al. arXiv:1708.07282.
    [90] Wang Y Y, et al. to be published.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2351) PDF downloads(270) Cited by()

Proportional views

Chiral Symmetry in Atomic Nucleus

doi: 10.11804/NuclPhysRev.34.03.310
Funds:  Nalional Basic Research Program of China (973 Program) (2013CB834400); National Natural Science Foundation of China (11335002, 11461141002, 11621131001)

Abstract: Symmetry and its breaking are basic scientific problems. Chiral symmetries are common in nature, for example, the macroscopic spiral arms of galaxies and the rotation of planets; the microscopic spirals of the mineral crystalline, the organic molecules and the elementary particles. The concept of chirality in atomic nuclei was first proposed in 1997. Since then many efforts have been made to understand chiral symmetry and its spontaneous breaking in atomic nuclei. Up to now, more than 30 candidates of chiral nuclei have been reported in the 80, 100, 130, and 190 mass regions. The concept of the chirality in atomic nuclei, the prediction, the signal, and the experimental verification of the chiral nuclei are briefly introduced; the recent theoretical and experimental progress are reviewed, in particular the existence of multiple chiral doublets (MχD), i.e., more than one pair of chiral doublet bands in one single nucleus; the simultaneous spontaneous breaking of chiral and reflection symmetry in the newly observed atomic nuclei is introduced, together with a prospect on the future study on nuclear chiral symmetry.

MENG Jie, WANG Yuanyuan, LI Zhiquan. Chiral Symmetry in Atomic Nucleus[J]. Nuclear Physics Review, 2017, 34(3): 310-317. doi: 10.11804/NuclPhysRev.34.03.310
Citation: MENG Jie, WANG Yuanyuan, LI Zhiquan. Chiral Symmetry in Atomic Nucleus[J]. Nuclear Physics Review, 2017, 34(3): 310-317. doi: 10.11804/NuclPhysRev.34.03.310
Reference (90)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return