Advanced Search

LIU Lu, GU Long, LI Jinyang. Effect of the Filling Rate on Tungsten Pebble Bed Spallation Target Neutronic Characteristics[J]. Nuclear Physics Review, 2017, 34(2): 270-274. doi: 10.11804/NuclPhysRev.34.02.270
Citation: LIU Lu, GU Long, LI Jinyang. Effect of the Filling Rate on Tungsten Pebble Bed Spallation Target Neutronic Characteristics[J]. Nuclear Physics Review, 2017, 34(2): 270-274. doi: 10.11804/NuclPhysRev.34.02.270

Effect of the Filling Rate on Tungsten Pebble Bed Spallation Target Neutronic Characteristics

doi: 10.11804/NuclPhysRev.34.02.270
Funds:  National Natural Science Foundation of China(91326203)
  • Received Date: 2016-03-18
  • Rev Recd Date: 2016-04-13
  • Publish Date: 2017-06-20
  • The physical model of the high-energy proton bombarding the tungsten pebble bed spallation target is simulated by the MCNPX program. The effect of the filling rate on the neutronic characteristics with different particle diameters is studied, by calculating the leakage neutron yield, leakage neutron spectrum axial neutron flux distribution and the energy deposition of the target. The result shows that when the diameter increases from 1 to 20 mm,the maximum deposited energy density decreases in the target, but the leakage neutron yield increases. When the filling rate reaches 74%, leakage neutron yields are almost the same value with different particle diameters. When the target is piled up with 1 mm tungsten particles, neutron leakage yield changes smaller with the variation of the filling rate than the other diameter particles which is beneficial to maintain the reactor power stability in ADS.
  • [1] ZHAO Zhixiang, XIA Haihong. Engineering Sciences,2008,10(3): 66. (in Chinese).(赵志祥, 夏海鸿. 中国工程科学, 2008, 10(3): 66.)
    [2] TSUJIMOTO K, SASA T, NISHIHARA K, et al. Progress in Nuclear Energy, 2000, 37(1): 339.
    [3] ZHAN Wenlong, XU Hushan. Bulletin of Chinese Academy of Sciences, 2012, 27(3): 375. (in Chinese)(詹文龙, 徐瑚珊. 中国科学院院刊, 2012, 27(3): 375.)
    [4] Anon. Invention & Innovation (Integrated Technology), 2013(04): 10. (in Chinese)(佚名. 发明与创新(综合科技), 2013 (04):10.)
    [5] SZABO J. ISRN LUTMDN/TMHP-10/5227-SE, 2010.
    [6] ATCHISON F, BAUMANN P, BRYŚT, et al. Nucl Instr and Meth, 2005, 539(3): 646.
    [7] PRAKASH K A, BISWAS G, KUMAR B V R. International Journal of Heat & Mass Transfer, 2006, 49( 23-24): 4633.
    [8] DURY T V. Journal of Nuclear Science and Technology,2004, 41(3): 285.
    [9] ABDERRAHIM H A, GALAMBOS J, GOHAR Y, et al.DOE white Paper on ADS, 2010, 1(1): 1.
    [10] MONGELLI S T, MAIORINO J R, ANÉFALOS S, et al.Brazilian Journal of Physics, 2005, 35(3B): 894.
    [11] ZHOU Z, XIAO S, YANG Y, et al. Thermal-Hydraulic Anal-ysis of Concept Design of Spallation Target in Chinese Ac-celerator Driven Subcritical System[C]// 2012 20th Interna-tional Conference on Nuclear Engineering and the ASME 2012 Power Conference. 2012:721.
    [12] Van TICHELEN K, KUPSCHUS P, DIERCKX M, et al.Free Surface Fluid Dynamics Code Adaptation by Exper-imental Evidence for the MYRRHA Spallation Target[C]//Theoretical and Experimental Studies of Heavy Liquid Metal Thermal Hydraulics: Proceedings of a Technical Meet-ing, Held in Karlsruhe, Germany, 28-31 October 2003. Inter-national Atomic Energy Agency, 2006: 101.
    [13] ZHAO Dongwei, DONG Changyin, ZHANG Qi, et al. Jour-nal of the University of Petroleum, China(Edition of Natural Science), 2004, 28(4): 59. (in Chinese)(赵东伟, 董长银, 张琪, 等. 石油大学学报(自然科学版), 2004,28(4): 59.)
    [14] LI Jun, LUO wen, XIAO Yongjun, et al. Nuclear Physics Review, 2014,31 (4): 550. (in Chinese)(李军, 罗文, 肖拥军, 等. 原子核物理评论, 2014,31(4):550.)
    [15] SELTBORG P, WALLENIUS J, TUCEK K, et al. Nuclear science and engineering, 2003, 145(3): 390.
    [16] WANG Yuwei, YANG Yongwei, CUI Pengfei. Energy Science and Technology, 2011, 45 (9): 1065. (in Chinese)(王育威, 杨永伟, 崔鹏飞. 原子能科学技术, 2011, 45(9): 1065.)
    [17] PELOWITZ D B, MCNPXTM U S. Los Alamos National Laboratory, California USA, 2011.
    [18] TAO Zhendong, ZHENG Shaohua. Powder Engineering and Equipment [M]. Beijing: Chemical Industry Press, 2010. (in Chinese)(陶珍东, 郑少华. 粉体工程与设备[M]. 北京:化学工业出版社,2010.)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1102) PDF downloads(157) Cited by()

Proportional views

Effect of the Filling Rate on Tungsten Pebble Bed Spallation Target Neutronic Characteristics

doi: 10.11804/NuclPhysRev.34.02.270
Funds:  National Natural Science Foundation of China(91326203)

Abstract: The physical model of the high-energy proton bombarding the tungsten pebble bed spallation target is simulated by the MCNPX program. The effect of the filling rate on the neutronic characteristics with different particle diameters is studied, by calculating the leakage neutron yield, leakage neutron spectrum axial neutron flux distribution and the energy deposition of the target. The result shows that when the diameter increases from 1 to 20 mm,the maximum deposited energy density decreases in the target, but the leakage neutron yield increases. When the filling rate reaches 74%, leakage neutron yields are almost the same value with different particle diameters. When the target is piled up with 1 mm tungsten particles, neutron leakage yield changes smaller with the variation of the filling rate than the other diameter particles which is beneficial to maintain the reactor power stability in ADS.

LIU Lu, GU Long, LI Jinyang. Effect of the Filling Rate on Tungsten Pebble Bed Spallation Target Neutronic Characteristics[J]. Nuclear Physics Review, 2017, 34(2): 270-274. doi: 10.11804/NuclPhysRev.34.02.270
Citation: LIU Lu, GU Long, LI Jinyang. Effect of the Filling Rate on Tungsten Pebble Bed Spallation Target Neutronic Characteristics[J]. Nuclear Physics Review, 2017, 34(2): 270-274. doi: 10.11804/NuclPhysRev.34.02.270
Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return