Advanced Search
Volume 34 Issue 1
Jan.  2017
Turn off MathJax
Article Contents

XU Chang. Nuclear Symmetry Energy Constrained by Nuclear Radioactivities[J]. Nuclear Physics Review, 2017, 34(1): 46-50. doi: 10.11804/NuclPhysRev.34.01.046
Citation: XU Chang. Nuclear Symmetry Energy Constrained by Nuclear Radioactivities[J]. Nuclear Physics Review, 2017, 34(1): 46-50. doi: 10.11804/NuclPhysRev.34.01.046

Nuclear Symmetry Energy Constrained by Nuclear Radioactivities

doi: 10.11804/NuclPhysRev.34.01.046
Funds:  National Natural Science Foundation of China (11575082, 11235001, 11175085)
  • Received Date: 2016-09-10
  • Publish Date: 2017-03-20
  • The density-dependence of symmetry energy is of particular importance to many problems in nuclear physics and astrophysics. Exotic cluster radioactivity is proposed to constrain the density slope of symmetry energy L(ρ0) by using the density-dependent cluster model (DDCM) where the cluster radioactivity serves as a link between the neutron skin thickness of 208Pb and the density slope L(ρ0). The isovector part of cluster-208Pb potential constructed from the M3Y nucleon-nucleon interaction is found to be very important in determining the density slope parameter L(ρ0). The correlation between the neutron skin thickness of 208Pb and the density slope parameter are obtained from cluster radioactivities around 208Pb with measured data. The constraint of L(ρ0) from proton radioactivity is also discussed.
  • [1] DANIELEWICZ P, LACEY R, LYNCH W G. Science, 2000, 298: 1592.
    [2] LATTIMER J M, PRAKASH M. Science, 2004, 304: 536.
    [3] STEINER A W, PRAKASH M, LATTIMER J M, et al. Phys Rep, 2005, 411: 325.
    [4] LI B A, CHEN L W, KO C M. Phys Rep, 2008, 464: 113.
    [5] LIU T X, LYNCH W G, SHOWALTER R H, et al. Phys Rev C, 2012, 86: 024605.
    [6] WARDA M, VIÑAS X, ROCA-MAZA X, et al. Phys Rev C, 2009, 80: 024316; CENTELLES M, et al. Phys Rev Lett, 2009, 102: 122502.
    [7] SWIATECKIWJ, TRZCINSKA A, JASTRZEBSKI J. Phys Rev C, 2005, 71: 047301.
    [8] SUMIYOSHI K, TOKI H. ApJ, 1994, 422: 700.
    [9] MÖOLLER P, MYERSWD, SAGAWA H, YOSHIDA S. Phys Rev Lett, 2012, 108: 052501.
    [10] CHEN L W, KO C M, LI B A. Phys Rev Lett, 2005, 94: 032701.
    [11] VIDAÑA I, POLLS A, PROVIDÊNCIA C. Phys Rev C, 2011, 84: 062801(R).
    [12] NAZAREWICZ W, REINHARD P G, SATU LA W, et al. Eur Phys J A, 2014, 50: 20.
    [13] KLIMKIEWICZ A, PAAR N, ADRICH P, et al. Phys Rev C, 2007, 76: 051603(R).
    [14] KOHLEY Z, MAY L W, WUENSCHEL S, et al. Phys Rev C, 2010, 82: 064601.
    [15] CARBONE A, COLÖ G, BRACCO A, et al. Phys Rev C, 2010, 81: 041301(R).
    [16] KHOA D T, LOC B M, THANG D N. Eur Phys J A, 2014, 50: 34.
    [17] YONG Gaochan, LI Bao-an, CHEN Liewen. Nuclear Physics Review, 2009, 26(2): 85. (in Chinese)
    [18] WANG Hongyuan, XU Chang. Nuclear Physics Review, 2016, 33: 1. (in Chinese)
    [19] WEN Dehua, JING Zhenzhen. Nuclear Physics Review, 2015, 32: 161. (in Chinese)
    [20] WU Qianghua, ZHANG Yingxun, XIAO Zhigang, et al. Nuclear Physics Review, 2016, 33: 251. (in Chinese)
    [21] BROWN B A. Phys Rev Lett, 2000, 85: 5296.
    [22] ABRAHAMYAN S, AHMED Z, ALBATAINEH H, et al. Phys Rev Lett, 2012, 108: 112502.
    [23] HOROWITZ C, AHMED Z, JEN C M, et al. Phys Rev C, 2012, 85: 032501.
    [24] FATTOYEV F J, PIEKAREWICZ J. Phys Rev Lett, 2013, 111: 162501.
    [25] TARBERT C M, WATTS D P, GLAZIER D I, et al. Phys Rev Lett, 2014, 112: 242502.
    [26] RÖOPKE G, SCHUCK P, FUNAKI Y, et al. Phys Rev C, 2014, 90: 034304.
    [27] XU C, REN Z, RÖOPKE G, et al. Phys Rev C, 2016, 93: 011306(R).
    [28] XU C, REN Z, LIU J. Phys Rev C, 2014, 90: 064310.
    [29] REN Z, XU C, WANG Z. Phys Rev C, 2004, 70: 034304.
    [30] XU C, REN Z. Phys Rev C, 2006, 73: 041301(R); Phys Rev C, 2006, 74: 014304.
    [31] BERTSCH G, BORYSOWICZ J, MCMANUS H, et al. Nucl Phys A, 1977, 284: 399.
    [32] KOBOS A M, BROWN B A, HODGSON P E, et al. Nucl Phys A, 1982, 384: 65.
    [33] SATCHLER G R, LOVE W G. Phys Reps, 1979, 55: 183.
    [34] WALECKA J D. Theoretical Nuclear Physics and Subnuclear Physics[M]. Oxford: Oxford Univ Press, 1995.
    [35] PRESTON M A, BHADURI R K. Structure of the Nucleus[ M]. Boston: Addison-Wesley Publishing Inc, (1975).
    [36] XU C, LI B A, CHEN L W. Phys Rev C, 2010, 87: 054607.
    [37] XU C, LI B A, CHEN L W. Nucl Phys A, 2011, 865: 1.
    [38] WAN N, XU C, REN Z. Phys Rev C, 2016, 94: 044322.
    [39] DELION D S, SANDULESCU A, GREINER W. Phys Rev C, 2004, 69: 044318.
    [40] ISMAIL M, ELLITHI A Y, BOTROS M M, et al. Phys Rev C, 2012, 86: 044317.
    [41] REN Y, REN Z. Phys Rev C, 2012, 85: 044608; Phys Rev C, 2014, 89: 064603.
    [42] TOHSAKI A, HORIUCHI H, SCHUCK P, et al. Phys Rev Lett, 2001, 87: 192501.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1318) PDF downloads(151) Cited by()

Proportional views

Nuclear Symmetry Energy Constrained by Nuclear Radioactivities

doi: 10.11804/NuclPhysRev.34.01.046
Funds:  National Natural Science Foundation of China (11575082, 11235001, 11175085)

Abstract: The density-dependence of symmetry energy is of particular importance to many problems in nuclear physics and astrophysics. Exotic cluster radioactivity is proposed to constrain the density slope of symmetry energy L(ρ0) by using the density-dependent cluster model (DDCM) where the cluster radioactivity serves as a link between the neutron skin thickness of 208Pb and the density slope L(ρ0). The isovector part of cluster-208Pb potential constructed from the M3Y nucleon-nucleon interaction is found to be very important in determining the density slope parameter L(ρ0). The correlation between the neutron skin thickness of 208Pb and the density slope parameter are obtained from cluster radioactivities around 208Pb with measured data. The constraint of L(ρ0) from proton radioactivity is also discussed.

XU Chang. Nuclear Symmetry Energy Constrained by Nuclear Radioactivities[J]. Nuclear Physics Review, 2017, 34(1): 46-50. doi: 10.11804/NuclPhysRev.34.01.046
Citation: XU Chang. Nuclear Symmetry Energy Constrained by Nuclear Radioactivities[J]. Nuclear Physics Review, 2017, 34(1): 46-50. doi: 10.11804/NuclPhysRev.34.01.046
Reference (42)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return