高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壳模型中中心力不确定度和跨壳激发效应的初步研究(英文)

袁岑溪 杜天雪

袁岑溪, 杜天雪. 壳模型中中心力不确定度和跨壳激发效应的初步研究(英文)[J]. 原子核物理评论, 2018, 35(4): 537-542. doi: 10.11804/NuclPhysRev.35.04.537
引用本文: 袁岑溪, 杜天雪. 壳模型中中心力不确定度和跨壳激发效应的初步研究(英文)[J]. 原子核物理评论, 2018, 35(4): 537-542. doi: 10.11804/NuclPhysRev.35.04.537
YUAN Cenxi, DU Tianxue. Preliminary Study on Uncertainty of Central Force and Effect of Cross-Shell Excitation in Shell Model[J]. Nuclear Physics Review, 2018, 35(4): 537-542. doi: 10.11804/NuclPhysRev.35.04.537
Citation: YUAN Cenxi, DU Tianxue. Preliminary Study on Uncertainty of Central Force and Effect of Cross-Shell Excitation in Shell Model[J]. Nuclear Physics Review, 2018, 35(4): 537-542. doi: 10.11804/NuclPhysRev.35.04.537

壳模型中中心力不确定度和跨壳激发效应的初步研究(英文)

doi: 10.11804/NuclPhysRev.35.04.537
基金项目: 国家自然科学基金资助项目(11775316);广东特支计划科技创新青年拔尖人才(2016TQ03N575);中央高校基本科研业务费(17lgzd34)
详细信息
  • 中图分类号: O571.6

Preliminary Study on Uncertainty of Central Force and Effect of Cross-Shell Excitation in Shell Model

Funds: National Natural Science Foundation of China(11775316); Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (2016TQ03N575); Fundamental Research Funds for the Central Universities(17lgzd34)
  • 摘要: 原子核壳模型不确定度虽然很重要,但目前为止还研究较少。本工作对壳模型中的核力不确定度和模型空间效应的展开了初步研究。核力中最重要的部分是中心力,中心力也被认为包含了最多的重整化效应。如果考虑半满壳核以及只考虑中心力的强度变化,对能谱的理论描述的变化只与中心力的C10(T,S=1,0)和C11(T,S=1,1)部分相关。中心力变化时,自旋轨道耦合力和张量力都保持裸核力的强度不变。由此得到的简单核力的一套强度参数可以对Sn和Pb同位素及N=82和126同中素的188个态的能谱描述达到0.2 MeV均方根差。但是如果对这些同位素和同中素分别考虑,均方根差可以进一步减小,并且有不同的极小值。质子质子相互作用的强度比中子中子相互作用的强度要大15%,这表明中重核中存在"镜像能差"。增大模型空间对部分核的描述很重要,比如考虑跨壳激发对质子或中子数为幻数的核很重要。还通过三个哈密顿量研究了丰中子F同位素,尽管三个哈密顿量的结果不同,双中子分离能和能谱都对跨壳激发非常敏感,并且被跨壳激发影响的趋势类似。


    The uncertainty of the nuclear shell model is important but rarely investigated. The present work provides preliminary investigations on the uncertainty of the nuclear force and the effect model space in shell-model calculations. The most important part of the nuclear force is the central force, which is also considered to include the largest contribution from the renormalization effect. If semi-magic nuclei are considered and only the strength of the central force varies, C10 (T,S=1,0) and C11 (T,S=1,1) channels of the central force contribute to the theoretical variances of the description of the levels, while the spin-orbit force and the tensor force are kept unchanged as the bare ones. One set of the strengths of a simple nuclear force gives an 0.2 MeV root mean square (RMS) between observed and theoretical levels from 188 states in Pb and Sn isotopes and N=82 and 126 isotones. However, if levels in these isotopes and isotones are separately considered, RMS are further reduced and found to have two minimums with 15% stronger pp interaction than nn interaction, which indicates a "mirror difference" in medium and heavy nuclei. The enlarge of the model space are of great significance for the description of certain nuclei, such as the inclusion of cross-shell excitations for the nuclei with magic neutron and/or proton numbers. The neutron-rich F isotopes are investigated through three Hamiltonians. Despite the different results among Hamiltonians, the two neutron separation energies and levels are sensitive to and similarly contributed by the cross-shell excitations.
  • [1] DOBACZEWSKI J, NAZAREWICZ W, REINHARD P G. J Phys G:Nucl Part Phys, 2014, 41:074001.
    [2] YUAN C X. Phys Rev C, 2016, 93:034310.
    [3] YUAN C X. Nucl Phys Rev, 2017, 34(1):110.
    [4] ERLER J, BIRGE N, KORTELAINEN M, et al. Nature, 2012, 486:510.
    [5] LIU M, GAO Y, WANG N. Chin Phys C, 2017, 41:114101.
    [6] YOSHIDA S, SHIMIZU N, TOGASHI T, OTSUKA T. arXiv:1810.03263
    [7] BROWN B A. Prog Part Nucl Phys, 2001, 47:517.
    [8] CAURIER E, MARTÍNEZ-PINEDO G, NOWACKI F, et al. Rev Mod Phys, 2005, 77:427.
    [9] XU X X, LIN C J, SUN L J, et al. Phys Lett B, 2017, 766:312; Xu X X, LIN C J, SUN L J, et al. arXiv:1610.08291.
    [10] MOON B, MOON C B, DRACOULIS G D, et al. Phys Lett B, 2018, 782:602.
    [11] SUN M D, LIU Z, HUANG T H, et al. Phys Lett B, 2017, 771:303.
    [12] MOON B, MOON C B, SÖDERSTRÖM P A, et al. Phys Rev C, 2017, 95:044322.
    [13] MOON B, MOON C B, ODAHARA A, et al. Phys Rev C, 2017, 96:014325.
    [14] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Phys Rev Lett, 2017, 119:161101.
    [15] SMARTT S J, CHEN T W, JERKSTRAND A, et al. Nature, 2017, 551:75.
    [16] CHEN S L, YUAN C X. ASME J of Nuclear Rad Sci, 2018, 4(4):041017.
    [17] CHEN S L, YUAN C X, GUO D X. arXiv:1809.01597.
    [18] YUAN C X, WANG X M, CHEN S L. Sci Techol Nucl Installation, 2016, 2016:6980547.
    [19] CHEN S L, YUAN C X. Ann Nucl Energy, 2019, 124:460.
    [20] CHEN S L, YUAN C X. Sci Techol Nucl Installation, 2017, 2017:3146985.
    [21] SCHIFFER J P, TRUE W W. Rev Mod Phys, 1976, 48:191.
    [22] HAN R, LI X Q, JIANG W G, et al. Phys Lett B, 2017, 772:529.
    [23] WARBURTON E K and BROWN B A. Phys Rev C, 1992, 46:923.
    [24] OTSUKA T, SUZUKI T, HONMA M, et al. Phys Rev Lett, 2010, 104:012501.
    [25] BERTSCH G, BORYSOWICZ J, MCMANUS H, et al. Nucl Phys A, 1977, 284:399.
    [26] YUAN C X, SUZIKI T, OTSUKA T, et al. Phys Rev C, 2012, 85:064324.
    [27] UTSUNO Y, OTSUKA T, BROWN B A, et al. Phys Rev C, 2012, 86:051301(R).
    [28] YUAN C X, LIU Z, XU F R, et al. Phys Lett B, 2016, 762:237.
    [29] YUAN C X. in preparation.
    [30] HWANG J W, KIM S, SATOU Y, et al. Phys Lett B, 2017, 769:503.
    [31] CHEN J, LOU J L, YE Y L, et al. Phys Lett B, 2018, 781:412.
    [32] CHEN J, LOU J L, YE Y L, et al. Phys Rev C, 2018, 98:014616.
    [33] YUAN C X. Chin Phys C, 2017, 41(10):104102.
    [34] UTSUNO Y, OTSUKA T, MIZUSAKI T, et al. Phys Rev C, 1999, 60:054315.
    [35] NOWACKI F, POVES A. Phys Rev C, 2009, 79:014310.
    [36] SHIMIZU N. arXiv:1310.5431
    [37] http://www.nndc.bnl.gov/nudat2/.
    [38] WANG M, AUDI G, KONDEV F G, et al. Chin Phys C, 2017, 41(3):030003.
    [39] YUAN C X, QI C, XU F R, et al. Phys Rev C, 2014, 89:044327.
  • 加载中
计量
  • 文章访问数:  1581
  • HTML全文浏览量:  196
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-15
  • 修回日期:  2018-11-03
  • 刊出日期:  2020-05-03

壳模型中中心力不确定度和跨壳激发效应的初步研究(英文)

doi: 10.11804/NuclPhysRev.35.04.537
    基金项目:  国家自然科学基金资助项目(11775316);广东特支计划科技创新青年拔尖人才(2016TQ03N575);中央高校基本科研业务费(17lgzd34)
  • 中图分类号: O571.6

摘要: 原子核壳模型不确定度虽然很重要,但目前为止还研究较少。本工作对壳模型中的核力不确定度和模型空间效应的展开了初步研究。核力中最重要的部分是中心力,中心力也被认为包含了最多的重整化效应。如果考虑半满壳核以及只考虑中心力的强度变化,对能谱的理论描述的变化只与中心力的C10(T,S=1,0)和C11(T,S=1,1)部分相关。中心力变化时,自旋轨道耦合力和张量力都保持裸核力的强度不变。由此得到的简单核力的一套强度参数可以对Sn和Pb同位素及N=82和126同中素的188个态的能谱描述达到0.2 MeV均方根差。但是如果对这些同位素和同中素分别考虑,均方根差可以进一步减小,并且有不同的极小值。质子质子相互作用的强度比中子中子相互作用的强度要大15%,这表明中重核中存在"镜像能差"。增大模型空间对部分核的描述很重要,比如考虑跨壳激发对质子或中子数为幻数的核很重要。还通过三个哈密顿量研究了丰中子F同位素,尽管三个哈密顿量的结果不同,双中子分离能和能谱都对跨壳激发非常敏感,并且被跨壳激发影响的趋势类似。


The uncertainty of the nuclear shell model is important but rarely investigated. The present work provides preliminary investigations on the uncertainty of the nuclear force and the effect model space in shell-model calculations. The most important part of the nuclear force is the central force, which is also considered to include the largest contribution from the renormalization effect. If semi-magic nuclei are considered and only the strength of the central force varies, C10 (T,S=1,0) and C11 (T,S=1,1) channels of the central force contribute to the theoretical variances of the description of the levels, while the spin-orbit force and the tensor force are kept unchanged as the bare ones. One set of the strengths of a simple nuclear force gives an 0.2 MeV root mean square (RMS) between observed and theoretical levels from 188 states in Pb and Sn isotopes and N=82 and 126 isotones. However, if levels in these isotopes and isotones are separately considered, RMS are further reduced and found to have two minimums with 15% stronger pp interaction than nn interaction, which indicates a "mirror difference" in medium and heavy nuclei. The enlarge of the model space are of great significance for the description of certain nuclei, such as the inclusion of cross-shell excitations for the nuclei with magic neutron and/or proton numbers. The neutron-rich F isotopes are investigated through three Hamiltonians. Despite the different results among Hamiltonians, the two neutron separation energies and levels are sensitive to and similarly contributed by the cross-shell excitations.

English Abstract

袁岑溪, 杜天雪. 壳模型中中心力不确定度和跨壳激发效应的初步研究(英文)[J]. 原子核物理评论, 2018, 35(4): 537-542. doi: 10.11804/NuclPhysRev.35.04.537
引用本文: 袁岑溪, 杜天雪. 壳模型中中心力不确定度和跨壳激发效应的初步研究(英文)[J]. 原子核物理评论, 2018, 35(4): 537-542. doi: 10.11804/NuclPhysRev.35.04.537
YUAN Cenxi, DU Tianxue. Preliminary Study on Uncertainty of Central Force and Effect of Cross-Shell Excitation in Shell Model[J]. Nuclear Physics Review, 2018, 35(4): 537-542. doi: 10.11804/NuclPhysRev.35.04.537
Citation: YUAN Cenxi, DU Tianxue. Preliminary Study on Uncertainty of Central Force and Effect of Cross-Shell Excitation in Shell Model[J]. Nuclear Physics Review, 2018, 35(4): 537-542. doi: 10.11804/NuclPhysRev.35.04.537
参考文献 (39)

目录

    /

    返回文章
    返回