高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

∧超核中单粒子谱的自旋及赝自旋对称性研究(英文)

吕万里 孙亭亭

吕万里, 孙亭亭. ∧超核中单粒子谱的自旋及赝自旋对称性研究(英文)[J]. 原子核物理评论, 2018, 35(4): 531-536. doi: 10.11804/NuclPhysRev.35.04.531
引用本文: 吕万里, 孙亭亭. ∧超核中单粒子谱的自旋及赝自旋对称性研究(英文)[J]. 原子核物理评论, 2018, 35(4): 531-536. doi: 10.11804/NuclPhysRev.35.04.531
LÜ Wanli, SUN Tingting. Spin and Pseudospin Symmetries in ∧ Hypernuclei[J]. Nuclear Physics Review, 2018, 35(4): 531-536. doi: 10.11804/NuclPhysRev.35.04.531
Citation: LÜ Wanli, SUN Tingting. Spin and Pseudospin Symmetries in ∧ Hypernuclei[J]. Nuclear Physics Review, 2018, 35(4): 531-536. doi: 10.11804/NuclPhysRev.35.04.531

∧超核中单粒子谱的自旋及赝自旋对称性研究(英文)

doi: 10.11804/NuclPhysRev.35.04.531
基金项目: 国家自然科学基金资助项目(11505157);郑州大学物理学科推进计划(32410017)
详细信息
  • 中图分类号: O571.2

Spin and Pseudospin Symmetries in ∧ Hypernuclei

Funds: National Natural Science Foundation of China(11505157); Physics Research and Development Program of Zhengzhou University(32410017)
  • 摘要: 原子核中单粒子谱的自旋和赝自旋对称性对核结构的研究具有重要意义。本文基于相对论平均场理论,以132Sn,133Sn,及2∧134Sn为例,研究了∧超核中单∧谱和单中子谱的自旋和赝自旋对称性。研究发现,单∧谱的自旋对称性保持得相当好,与实验观测一致;而其赝自旋对称性只是近似保持,与核子谱的情况类似。此外,还研究了∧超子对中子谱的杂质效应,发现∧超子使中子谱的自旋对称性变差,赝自旋对称性变好。


    Spin and pseudospin symmetries in the single-particle spectra of atomic nuclei are of great significance for the study of nuclear structure. In this work, taking 132Sn, 133Sn, and 2∧134Sn as examples, the spin and pseudospin symmetries in ∧ hypernuclei are studied by using the relativistic mean-field model. For the single-∧ spectra, results show that the spin symmetry maintains well while the pseudospin symmetry is approximately conserved. Besides, as impurities, the ∧ hyperons worsen the spin symmetry of single-neutron spectra while improve the pseudospin symmetry.
  • [1] GINOCCHIO J N. Phys Rep, 2005, 414:165.
    [2] LIANG H Z, MENG J, ZHOU S G. Phys Rep, 2015, 570:1.
    [3] MAYER M G. Phys Rev, 1949, 75:1969.
    [4] HAXEL O, JENSEN J H D, SUESS H E. Phys Rev, 1949, 75:1766.
    [5] HECHT K T, ADLER A. Nucl Phys A, 1969, 137:129.
    [6] ARIMA A, HARVEY M, SHIMIZU K. Phys Lett B, 1969, 30:517.
    [7] BOHR A, HAMAMOTO I, MOTTELSON B R. Phys Scr, 1982, 26:267.
    [8] DUDEK J, NAZAREWICZ W, SZYMANSKI Z, et al. Phys Rev Lett, 1987, 59:1405.
    [9] NAZAREWICZ W, TWIN P J, FALLON P, et al. Phys Rev Lett, 1990, 64:1654.
    [10] BYRSKI T, BECK F A, CURIEN D, et al. Phys Rev Lett, 1990, 64:1650.
    [11] ZENG J Y, MENG J, WU C S, et al. Phys. Rev. C, 1991, 44:R1745.
    [12] GINOCCHIO J N. Phys Rev Lett, 1997, 78:436.
    [13] GINOCCHIO J N, MADLAND D G. Phys Rev C, 1998, 57:1167.
    [14] MENG J, SUGAWARA-TANABE K, YAMAJI S, et al. Phys Rev C, 1998, 58:R628.
    [15] MENG J, SUGAWARA-TANABE K, YAMAJI S, et al. Phys Rev C, 1999, 59:154.
    [16] LALAZISSIS G A, GAMBHIR Y K, MAHARANA J P, et al. Phys Rev C, 1998, 58:R45.
    [17] SUGAWARA-TANABE K, ARIMA A. Phys Rev C, 1998, 58:R3065.
    [18] GINOCCHI J N, LEVIATAN A, MENG J, et al. Phys Rev C, 2004, 69:034303.
    [19] ZHOU S G, MENG J, RING P. Phys Rev Lett, 2003, 91:262501.
    [20] HE X T, ZHOU S G, MENG J, et al. Eur Phys J A, 2006, 28:265.
    [21] GUO J Y, WANG R D, FANG X Z. Phys Rev C, 2005, 72:054319.
    [22] ZHANG S S, SUN B H, ZHOU S G. Chin Phys Lett, 2007,24:1199.
    [23] LU B N, ZHAO E G, ZHOU S G. Phys Rev Lett, 2012, 109:072501.
    [24] LU B N, ZHAO E G, ZHOU S G. Phys Rev C, 2013, 88:024323.
    [25] LU B N, ZHAO E G, ZHOU S G. AIP Conf Proc, 2013, 1533:63.
    [26] LU B N, ZHAO E G, ZHOU S G. J Phys:Conf Ser, 2014, 533:012021.
    [27] LISBOA R, MALHEIRO M, ALBERTO P, et al. Phys Rev C, 2010, 81:064324.
    [28] ALBERTO P, FIOLHAIS M, MALHEIRO M, et al. Phys Rev C, 2002, 65:034307.
    [29] LEVIATAN A. Phys Rev Lett, 2004, 92:202501.
    [30] LIANG H Z, SHEN S H, ZHAO P W, et al. Phys Rev C, 2013, 87:014334.
    [31] SHEN S H, LIANG H Z, ZHAO P W, et al. Phys Rev C, 2013, 88:024311.
    [32] AJIMURA S, HAYAKAWA H, KISHIMOTO T, et al. Phys Rev Lett, 2001, 86:4255.
    [33] DNAYSZ M, PNIEWSKI J. Philos Mag, 1953, 44:348.
    [34] HASHIMOTO O, TAMURA H. Prog Part Nucl Phys, 2006, 57:564.
    [35] GAL A, HUNGERFORD E V, MILLENER D J. Rev Mod Phys, 2016, 88:035004.
    [36] MA Z Y, SPETH J, KREWALD S, et al. Nucl Phys A, 1996, 608:305.
    [37] HIYAMA E, MOTOBA T, RIJKEN T A, et al. Prog Theor Phys Suppl, 2010, 185:1.
    [38] LIU Z X, XIA C J, LU W L, et al. Phys Rev C, 2018, 98:024316.
    [39] SUN T T, HIYAMA E, SAGAWA H, et al. Phys Rev C, 2016, 94:064319.
    [40] HOFMANN F, KEIL C M, LENSKE H. Phys Rev C, 2001, 64:025804.
    [41] SCHAFFNER-BIELICH J. Nucl Phys A, 2008, 804:309.
    [42] VIDANA I. Nucl Phys A, 2013, 914:367.
    [43] SUN T T, XIA C J, ZHANG S S, et al. Chin Phys C, 2018, 42:025101.
    [44] XIA C J, PENG G X, SUN T T, et al. Phys Rev D, 2018, 98:034031.
    [45] SONG C Y, YAO J M, MENG J. Chin Phys Lett, 2009, 26:122102.
    [46] SONG C Y, YAO J M. Chin Phys C, 2010, 34:1425.
    [47] SONG C Y, YAO J M, MENG J. Chin Phys Lett, 2011, 28:092101.
    [48] MENG J, TOKI H, ZHOU S G, et al. Prog Part Nucl Phys, 2006, 57:470.
    [49] MENG J, ZHOU S G. J Phys G:Nucl Part Phys, 2015, 42:093101.
    [50] SUN T T. Sci Sin-Phys Mech Astron, 2016, 46:012006. (in Chinese)
    [51] BROCKMANN R, WEISE W. Phys Lett B, 1977, 69:167.
    [52] MARES J, JENNINGS B K. Phys Rev C, 1994, 49:2472.
    [53] LU B N, ZHAO E G, ZHOU S G. Phys Rev C, 2011, 84:014328.
    [54] LU B N, HIYAMA E, SAGAWA H, et al. Phys Rev C, 2014, 89:044307.
    [55] XIA H J, MEI H, YAO J M. Sci Sin-Phys Mech Astron, 2017, 60:102021.
    [56] JENNINGS B. Phys Lett B, 1990, 246:325.
    [57] SUN T T, LU W L, ZHANG S S. Phys Rev C, 2017, 96:044312.
    [58] LONG W H, MENG J, GIAI N VAN, et al. Phys Rev C, 2004, 69:034319.
    [59] REN S H, SUN T T, ZHANG W. Phys Rev C, 2017, 95:054318.
    [60] DOVER C B, GAL A. Prog Part Nucl Phys, 1984, 12:171.
    [61] MENG J, TANIHATA I. Nucl Phys A, 1999, 650:176.
    [62] LU W L, LIU Z X, REN S H, et al. J Phys G:Nucl Part Phys, 2017, 44:125104.
  • 加载中
计量
  • 文章访问数:  1054
  • HTML全文浏览量:  78
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-18
  • 刊出日期:  2020-05-03

∧超核中单粒子谱的自旋及赝自旋对称性研究(英文)

doi: 10.11804/NuclPhysRev.35.04.531
    基金项目:  国家自然科学基金资助项目(11505157);郑州大学物理学科推进计划(32410017)
  • 中图分类号: O571.2

摘要: 原子核中单粒子谱的自旋和赝自旋对称性对核结构的研究具有重要意义。本文基于相对论平均场理论,以132Sn,133Sn,及2∧134Sn为例,研究了∧超核中单∧谱和单中子谱的自旋和赝自旋对称性。研究发现,单∧谱的自旋对称性保持得相当好,与实验观测一致;而其赝自旋对称性只是近似保持,与核子谱的情况类似。此外,还研究了∧超子对中子谱的杂质效应,发现∧超子使中子谱的自旋对称性变差,赝自旋对称性变好。


Spin and pseudospin symmetries in the single-particle spectra of atomic nuclei are of great significance for the study of nuclear structure. In this work, taking 132Sn, 133Sn, and 2∧134Sn as examples, the spin and pseudospin symmetries in ∧ hypernuclei are studied by using the relativistic mean-field model. For the single-∧ spectra, results show that the spin symmetry maintains well while the pseudospin symmetry is approximately conserved. Besides, as impurities, the ∧ hyperons worsen the spin symmetry of single-neutron spectra while improve the pseudospin symmetry.

English Abstract

吕万里, 孙亭亭. ∧超核中单粒子谱的自旋及赝自旋对称性研究(英文)[J]. 原子核物理评论, 2018, 35(4): 531-536. doi: 10.11804/NuclPhysRev.35.04.531
引用本文: 吕万里, 孙亭亭. ∧超核中单粒子谱的自旋及赝自旋对称性研究(英文)[J]. 原子核物理评论, 2018, 35(4): 531-536. doi: 10.11804/NuclPhysRev.35.04.531
LÜ Wanli, SUN Tingting. Spin and Pseudospin Symmetries in ∧ Hypernuclei[J]. Nuclear Physics Review, 2018, 35(4): 531-536. doi: 10.11804/NuclPhysRev.35.04.531
Citation: LÜ Wanli, SUN Tingting. Spin and Pseudospin Symmetries in ∧ Hypernuclei[J]. Nuclear Physics Review, 2018, 35(4): 531-536. doi: 10.11804/NuclPhysRev.35.04.531
参考文献 (62)

目录

    /

    返回文章
    返回