高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Skyrme型N∧相互作用下超越平均场模型的∧超核研究

陈超锋 周先荣 崔继伟 李文影

陈超锋, 周先荣, 崔继伟, 李文影. Skyrme型N∧相互作用下超越平均场模型的∧超核研究[J]. 原子核物理评论, 2018, 35(4): 409-419. doi: 10.11804/NuclPhysRev.35.04.409
引用本文: 陈超锋, 周先荣, 崔继伟, 李文影. Skyrme型N∧相互作用下超越平均场模型的∧超核研究[J]. 原子核物理评论, 2018, 35(4): 409-419. doi: 10.11804/NuclPhysRev.35.04.409
CHEN Chaofeng, ZHOU Xianrong, CUI Jiwei, LI Wenying. Study of ∧ Hypernuclei Using the Beyond-mean-field Approach with Skyrme-type N∧ Interaction[J]. Nuclear Physics Review, 2018, 35(4): 409-419. doi: 10.11804/NuclPhysRev.35.04.409
Citation: CHEN Chaofeng, ZHOU Xianrong, CUI Jiwei, LI Wenying. Study of ∧ Hypernuclei Using the Beyond-mean-field Approach with Skyrme-type N∧ Interaction[J]. Nuclear Physics Review, 2018, 35(4): 409-419. doi: 10.11804/NuclPhysRev.35.04.409

Skyrme型N∧相互作用下超越平均场模型的∧超核研究

doi: 10.11804/NuclPhysRev.35.04.409
基金项目: 国家自然科学基金资助项目(11775081,11547044);上海市自然科学基金资助项目(17ZR1408900)
详细信息
    作者简介:

    陈超锋(1994-),男,浙江绍兴人,硕士研究生,从事原子核结构研究;E-mail:51174700002@stu.ecnu.edu.cn

    通讯作者: 周先荣,E-mail:xrzhou@phy.ecnu.edu.cn
  • 中图分类号: O571.53

Study of ∧ Hypernuclei Using the Beyond-mean-field Approach with Skyrme-type N∧ Interaction

Funds: National Natural Science Foundation of China(11775081,11547044); Natural Science Foundation of Shanghai, China(17ZR1408900)
  • 摘要: 使用超越平均场Skyrme-Hartree-Fock(SHF)模型对9Be,∧∧10Be,13C和21Ne进行计算,采用SLy4参数组的Skyrme力作为NN相互作用力,采用最近提出的SLL4参数组的Skyrme力作为N∧相互作用。计算中包含了超子的自旋-轨道力以再现单粒子态的自旋-轨道能级分裂和不交叉效应,并采用BCS方法处理对力。讨论了不同组态超核的相关性质,包含12C⊗∧[000]1/2+12C⊗∧[110]1/2-12C⊗∧[101]3/2-12C⊗∧[101]1/2-8Be⊗∧[000]1/2+8Be⊗∧[110]1/2-8Be⊗∧[101]3/2-8Be⊗∧[101]1/2-。计算了9Be,13C的低激发能谱并与实验值进行了比较。结果表明,采用的超越平均场SHF模型能很好地再现∧超子占据s轨道的正宇称能级。对8Be的计算结果表明该模型可以很好地再现8Be的集团结构,可以得出9Be的真实超核态能级和9Be类似态。对9Be及13C的计算均再现了自旋双重态(3/2+,5/2+),但是得到的双重态能级差依然与实验值有出入。此外,对于上述超核体系均在∧超子占据∧[000]1/2+轨道时产生了收缩效应。还对21Ne进行了计算并和超越平均场RMF模型计算结果进行比较,发现两者计算结果虽有细节上的出入,但是结果基本一致。


    The beyond-mean-field Skyrme-Hartree-Fock approach is adopted to investigate the properties of 9Be, ∧∧10Be, 13C and 21Ne. The nucleon-nucleon (NN) interaction SLy4 and the nucleon-hyperon(N∧) interaction Skyrme-type SLL4 are used. The spin-orbit force of hyperon is included to show the spin-orbit splitting and non-crossing effect with BCS method to deal with pairing force. Energies of different configurations, such as 12C⊗∧[000]1/2+, 12C⊗∧[110]1/2-, 12C⊗∧[101]3/2-, 12C⊗∧[101]1/2-, 8Be⊗∧[000]1/2+, 8Be⊗∧[110]1/2-, 8 Be⊗∧[101]3/2- and 8Be⊗∧[101]1/2- are given and used to study the effects of ∧ occupying different orbitals. The calculated energy spectra, including both positive-and negative-parity levels, are given and compared to the experimental data. The observed positive-parity spin-doublet (3/2+,5/2+) are successfully reproduced, but the energy difference needs further investigation. The two well known band structures corresponding to the genuine hypernuclear states and the 9Be-analog states are also obtained and compared with the observed ones. The shrinkage effect of ∧ occupying ∧[000]1/2+ is investigated through the density distributions of nuclear core. And finally the calculation results of 21Ne are given and compared with the results of RMF method, which are nearly the same but with differences in some details.
  • [1] HASHIMOTO O, TAMURA H. Lect Notes Phys, 2009, 781:105.
    [2] BOTTA E, BRESSANI T, GARBARINO G, et al. Eur Phys J A, 2012, 48:41.
    [3] GAL A, HUNGERFORD E V, MILLENER D J. Rev Mod Phys, 2016, 88:1.
    [4] BRÜCKNER W, FAESSLER M.A, KILIAN K, et al. Phys Lett B, 1975, 55:107; BRÜCKNER W, GRANZ B, INGHAM D, et al. Phys Lett B, 1976, 62:481; BRÜCKNER W, FAESSLER M A, KETEL T J, et al. Phys Lett B, 1978, 79:157.
    [5] DALITZ R H, GAL A. Phys Rev Lett, 1976, 36:362.
    [6] AUERBACH E H, BALTZ A J, DOVER C B, et al. Ann Phys, 1983, 148:381.
    [7] YAMADA T, IKEDA K, MOTOBA T, et al. Nucl Phys A, 1986, 450:333.
    [8] YAMADA T, IKEDA K, BANDŌ H, et al. Phys Rev C, 1988, 38:854.
    [9] PILE P H, BART S, CHRIEN R E, et al. Phys Rev Lett, 1991, 66:2585.
    [10] HASHIMOTO O, AJIMURA S, AOKI K, et al. Nucl Phys A, 1998, 639:93c.
    [11] AHN J.K, AKAISHI Y, AKIKAWA H, et al. AIP Conf Proc, 2001, 594:180.
    [12] HIYAMA E, KAMIMURA M, MOTOBA T, et al. Phys Rev C, 2002, 66:13.
    [13] GAL A, MILLENER D J. Phys Lett B, 2011, 701:342.
    [14] GAL A, SOPER J M, Dalitz R H. Ann Phys (N.Y.), 1971, 63:53.
    [15] GAL A, SOPER J M, Dalitz R H. Ann Phys (N.Y.), 1972, 72:445.
    [16] GAL A. Nucl Phys A, 2005, 754:91.
    [17] HIYAMA E, KAMIMURA M, MOTOBA T, et al. Phys Rev Lett, 2000, 85:270.
    [18] HIYAMA E, YAMAMOTOY, MOTOBA T, et al. Phys Rev C, 2009, 80:054321.
    [19] HIYAMA E, KAMIMURA M, YAMAMOTO Y, et al. Phys Rev Lett, 2010, 104:212502.
    [20] RAYET M. Nucl Phys A, 1981, 367:381.
    [21] CUGNON J, LEJEUNE A, Schulze H J. Phys Rev C, 2000, 62:064308.
    [22] VIDAÑA I, POLLS A, RAMOS A, et al. Phys Rev C, 2001, 64:044301.
    [23] ZHOU X R, SCHULZE H J, SAGAWA H, et al. Phys Rev C, 2007, 76:034312.
    [24] ZHOU X R, POLLS A, SCHULZE H J, et al. Phys Rev C, 2008, 78:054306.
    [25] WIN M T, HAGINO K, KOIKE T. Phys Rev C, 2011, 83:014301.
    [26] SCHULZE H J, RIJKEN T. Phys Rev C, 2013, 88:024322.
    [27] ZHOU X R, HIYAMA E, SAGAWA H. Phys Rev C, 2016, 94:024331.
    [28] WIN M T, HAGINO K. Phys Rev C, 2008, 78:054311.
    [29] SONG C Y, YAO J M, LÜ H F, et al. Int J Mod Phys E, 2018, 19:2538.
    [30] LU Bingnan, ZHAO Enguang, ZHOU Shangui. Phys Rev C, 2011, 84:014328.
    [31] TANIMURA Y, HAGINO K. Phys Rev C, 2012, 85:014306.
    [32] LU Bingman, EMIKO H, HIROYUKI S, et al. Phys Rev C, 2014, 89:044307.
    [33] XU Renli, WU Chen, REN Zhongzhou. Nucl Phys A, 2015, 933:82.
    [34] KANADA-EN'YO Y, HORIUCHI H, Ono A. Phys Rev C, 1995, 52:628.
    [35] ISAKA M, KIMURA M, DOTE A, et al. Phys Rev C, 2011, 83:044323; ISAKA M, KIMURA M, DOTE A, et al. Phys Rev C, 2011, 83:054304.
    [36] ISAKA M, HOMMA H, KIMURA M, et al. Phys Rev C,2012, 85:034303.
    [37] ISAKA M, KIMURA M, DOTE A, et al. Phys Rev C, 2013, 87:021304(R).
    [38] ISAKA M, KIMURA M. Phys Rev C, 2015, 92:044326.
    [39] WIRTH R, GAZDA D, NAVRATIL P, et al. Phys Rev Lett, 2014, 113:192502.
    [40] SCHULZE H J, HIYAMA E. Phys Rev C, 2014, 90:047301.
    [41] MEI H, HAGINO K, YAO J M. Phys Rev C, 2016, 93:011301(R).
    [42] WU X Y, MEI H, YAO J M, et al. Phys Rev C, 2017, 95:034309.
    [43] CUI Jiwei, ZHOU Xianrong, GUO Lixin, et al. Phys Rev C, 2017, 95:024323.
    [44] YAO J M, LI Z P, HAGINO K,et al. Nucl Phys A, 2011, 868:12.
    [45] MEI H, HAGINO K, YAO J M, et al. Phys Rev C, 2014, 90:064302.
    [46] XUE W X, YAO J M, HAGINO K, et al. Phys Rev C, 2015, 91:024327.
    [47] MEI H, HAGINO K, YAO J M, et al. Phys Rev C, 2015, 91:064305.
    [48] MEI H, HAGINO K, YAO J M, et al. Phys Rev C, 2016, 93:044307.
    [49] BENDER M, RUTZ K, REINHARD P G, et al. Eur Phys J A, 2000, 8:59.
    [50] RING P, SCHUCK P. The Nuclear Many-Body Problem[M]. Berlin:Springer, 1980.
    [51] RODRIGUEZ-GUZMAN R, EGIDO J L, Robledo L M. Phys Lett B, 2000, 474:15.
    [52] BONCHE P, DOBACZEWSKI J, FLOCARD H, et al. Nucl Phys A, 1990, 510:466.
    [53] YAO J M, MEI H, CHEN H, et al. Phys Rev C, 2011, 83:014308.
    [54] DOBACZEWSKI J, SATULA W, CARLSSON B G, et al. Comput Phys Commun, 2009, 180:2361.
    [55] SAGAWA H, ZHOU X R, ZHANG X Z, et al. Phys Rev C, 2004, 70:054316.
    [56] TERASAKI J, HEENEN P H, FLOCARD H, et al. Nucl Phys A, 1996, 600:371.
    [57] CUI JiWei, ZHOU Xianrong, HANS-JOSEF S. Phys Rev C, 2015, 91:054306.
    [58] KOHRI H, AJIMURA S, HAYAKAWA H, et al. Phys Rev C, 2002, 65:034607.
    [59] GREINER W, MARUHN J A. Nuclear Models[M]. Berlin:Springer-Verlag, 1996.
    [60] National Nuclear Data Center. http://www.nndc.bnl.gov/.
    [61] GAL A, BARANGER M, VOGT E. Advances in Nuclear Physics, 1975,8:1.
    [62] TAMURA H, AJIMURA S, AKIKAWA H, et al. Nucl Phys A, 2005, 754:58c.
    [63] AKIKAWA H, AJIMURA S, CHRIEN R E, et al. Phys Rev Lett, 2002, 88:082501.
    [64] DATAR V M, CHAKRABARTY D R, SURESH K, et al. Phys Rev Lett, 2013, 111:062502.
    [65] YU Youwen, MOTOBA T, BANDŌ H. Prog Theor Phys, 1986, 76:861.
    [66] STONE N J. At Data Nucl Data Tables, 2016, 111-112:1.
  • 加载中
计量
  • 文章访问数:  941
  • HTML全文浏览量:  190
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-10
  • 修回日期:  2018-11-30
  • 刊出日期:  2020-05-03

Skyrme型N∧相互作用下超越平均场模型的∧超核研究

doi: 10.11804/NuclPhysRev.35.04.409
    基金项目:  国家自然科学基金资助项目(11775081,11547044);上海市自然科学基金资助项目(17ZR1408900)
    作者简介:

    陈超锋(1994-),男,浙江绍兴人,硕士研究生,从事原子核结构研究;E-mail:51174700002@stu.ecnu.edu.cn

    通讯作者: 周先荣,E-mail:xrzhou@phy.ecnu.edu.cn
  • 中图分类号: O571.53

摘要: 使用超越平均场Skyrme-Hartree-Fock(SHF)模型对9Be,∧∧10Be,13C和21Ne进行计算,采用SLy4参数组的Skyrme力作为NN相互作用力,采用最近提出的SLL4参数组的Skyrme力作为N∧相互作用。计算中包含了超子的自旋-轨道力以再现单粒子态的自旋-轨道能级分裂和不交叉效应,并采用BCS方法处理对力。讨论了不同组态超核的相关性质,包含12C⊗∧[000]1/2+12C⊗∧[110]1/2-12C⊗∧[101]3/2-12C⊗∧[101]1/2-8Be⊗∧[000]1/2+8Be⊗∧[110]1/2-8Be⊗∧[101]3/2-8Be⊗∧[101]1/2-。计算了9Be,13C的低激发能谱并与实验值进行了比较。结果表明,采用的超越平均场SHF模型能很好地再现∧超子占据s轨道的正宇称能级。对8Be的计算结果表明该模型可以很好地再现8Be的集团结构,可以得出9Be的真实超核态能级和9Be类似态。对9Be及13C的计算均再现了自旋双重态(3/2+,5/2+),但是得到的双重态能级差依然与实验值有出入。此外,对于上述超核体系均在∧超子占据∧[000]1/2+轨道时产生了收缩效应。还对21Ne进行了计算并和超越平均场RMF模型计算结果进行比较,发现两者计算结果虽有细节上的出入,但是结果基本一致。


The beyond-mean-field Skyrme-Hartree-Fock approach is adopted to investigate the properties of 9Be, ∧∧10Be, 13C and 21Ne. The nucleon-nucleon (NN) interaction SLy4 and the nucleon-hyperon(N∧) interaction Skyrme-type SLL4 are used. The spin-orbit force of hyperon is included to show the spin-orbit splitting and non-crossing effect with BCS method to deal with pairing force. Energies of different configurations, such as 12C⊗∧[000]1/2+, 12C⊗∧[110]1/2-, 12C⊗∧[101]3/2-, 12C⊗∧[101]1/2-, 8Be⊗∧[000]1/2+, 8Be⊗∧[110]1/2-, 8 Be⊗∧[101]3/2- and 8Be⊗∧[101]1/2- are given and used to study the effects of ∧ occupying different orbitals. The calculated energy spectra, including both positive-and negative-parity levels, are given and compared to the experimental data. The observed positive-parity spin-doublet (3/2+,5/2+) are successfully reproduced, but the energy difference needs further investigation. The two well known band structures corresponding to the genuine hypernuclear states and the 9Be-analog states are also obtained and compared with the observed ones. The shrinkage effect of ∧ occupying ∧[000]1/2+ is investigated through the density distributions of nuclear core. And finally the calculation results of 21Ne are given and compared with the results of RMF method, which are nearly the same but with differences in some details.

English Abstract

陈超锋, 周先荣, 崔继伟, 李文影. Skyrme型N∧相互作用下超越平均场模型的∧超核研究[J]. 原子核物理评论, 2018, 35(4): 409-419. doi: 10.11804/NuclPhysRev.35.04.409
引用本文: 陈超锋, 周先荣, 崔继伟, 李文影. Skyrme型N∧相互作用下超越平均场模型的∧超核研究[J]. 原子核物理评论, 2018, 35(4): 409-419. doi: 10.11804/NuclPhysRev.35.04.409
CHEN Chaofeng, ZHOU Xianrong, CUI Jiwei, LI Wenying. Study of ∧ Hypernuclei Using the Beyond-mean-field Approach with Skyrme-type N∧ Interaction[J]. Nuclear Physics Review, 2018, 35(4): 409-419. doi: 10.11804/NuclPhysRev.35.04.409
Citation: CHEN Chaofeng, ZHOU Xianrong, CUI Jiwei, LI Wenying. Study of ∧ Hypernuclei Using the Beyond-mean-field Approach with Skyrme-type N∧ Interaction[J]. Nuclear Physics Review, 2018, 35(4): 409-419. doi: 10.11804/NuclPhysRev.35.04.409
参考文献 (66)

目录

    /

    返回文章
    返回