高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

协变密度泛函理论中的张量力效应

梁豪兆 申时行 王之恒

梁豪兆, 申时行, 王之恒. 协变密度泛函理论中的张量力效应[J]. 原子核物理评论, 2018, 35(4): 390-400. doi: 10.11804/NuclPhysRev.35.04.390
引用本文: 梁豪兆, 申时行, 王之恒. 协变密度泛函理论中的张量力效应[J]. 原子核物理评论, 2018, 35(4): 390-400. doi: 10.11804/NuclPhysRev.35.04.390
LIANG Haozhao, SHEN Shihang, WANG Zhiheng. Effects of Tensor Force in Covariant Density Functional Theory[J]. Nuclear Physics Review, 2018, 35(4): 390-400. doi: 10.11804/NuclPhysRev.35.04.390
Citation: LIANG Haozhao, SHEN Shihang, WANG Zhiheng. Effects of Tensor Force in Covariant Density Functional Theory[J]. Nuclear Physics Review, 2018, 35(4): 390-400. doi: 10.11804/NuclPhysRev.35.04.390

协变密度泛函理论中的张量力效应

doi: 10.11804/NuclPhysRev.35.04.390
基金项目: 日本学术振兴会资助项目(18K13549);国家自然科学基金委员会与日本学术振兴会合作项目(11711540016)
详细信息
    作者简介:

    梁豪兆(1982-),男,广东广州人,博士,研究员,博士生导师,从事原子核理论研究;E-mail:haozhao.liang@riken.jp。

  • 中图分类号: O571.53

Effects of Tensor Force in Covariant Density Functional Theory

Funds: Japan Society for the Promotion of Science (18K13549); National Natural Science Foundation of China-Japan Society for the Promotion of Science Bilateral Program (11711540016)
  • 摘要: 张量力是核子-核子相互作用的重要成分,被认为是理解奇特原子核中壳结构演化规律的关键要素。然而,目前对于核介质中的张量力及其效应的定量认识,仍存在很多亟待解决的关键问题。着重梳理了在原子核密度泛函理论框架下,研究有效相互作用中的张量力成分以及相应的张量力效应的相关工作,重点包括:基于相对论Hartree-Fock理论,以同位素链中的质子幻数壳演化为例,定量提取与分析其中的张量力效应;以及基于第一性原理的相对论Brueckner-Hartree-Fock理论,以中子滴单粒子能谱中的自旋-轨道劈裂演化为例,提出与张量力效应相关联的"准实验数据"。最后,展望原子核密度泛函理论今后可能的发展策略。


    Tensor force is one of the most important components of the nucleon-nucleon interaction. It plays a critical role in understanding the shell evolution in exotic nuclei. However, there are still several puzzles concerning the tensor force and its effects in the nuclear medium. In this paper, we mainly focus on the studies of tensor force in the effective interactions and its effects in finite nuclear systems within the scheme of nuclear density functional theory. In particular, we highlight the recent developments, including the quantitative analysis of tensor effects in the relativistic Hartree-Fock theory by taking the evolution of proton magic shells in the isotopic chains as an example, and the "meta-data" of tensor effects provided by the ab initio relativistic Brueckner-Hartree-Fock theory by taking the evolution of spin-orbit splitting in the single-particle spectra of neutron drops as an example. Perspectives are focused on the possible strategies for the future developments of nuclear density functional theory.
  • [1] YUKAWA H. Proc Phys Math Soc Japan, 1935, 17:48.
    [2] RARITA W, SCHWINGER J. Phys Rev, 1941, 59:436.
    [3] SORLIN O, PORQUET M G. Prog Part Nucl Phys, 2008, 61:602.
    [4] WIENHOLTZ F, BECK D, BLAUM K, et al. Nature, 2013, 498:346.
    [5] STEPPENBECK D, TAKEUCHI S, AOI N, et al. Nature, 2013, 502:207.
    [6] OTSUKA T, GADE A, SORLIN O, et al. ArXiv:1805.06501[nucl-th], 2018.
    [7] OTSUKA T, SUZUKI T, FUJIMOTO R, et al. Phys Rev Lett, 2005, 95:232502.
    [8] BENDER M, HEENEN P H, REINHARD P G. Rev Mod Phys, 2003, 75:121.
    [9] MENG J, TOKI H, ZHOU S G, et al. Prog Part Nucl Phys, 2006, 57:470.
    [10] NAKATSUKASA T, MATSUYANAGI K, MATSUO M, et al. Rev Mod Phys, 2016, 88:045004.
    [11] XIA X W, LIM Y, ZHAO P W, et al. At Data Nucl Data Tables, 2018, 121-122:1.
    [12] STANCU F, BRINK D M, FLOCARD H. Phys Lett B, 1977, 68:108.
    [13] BERGER J F, GIROD M, GOGNY D. Comput Phys Commun, 1991, 63:365.
    [14] MENG J. (ed.). Relativistic Density Functional for Nuclear Structure (International Review of Nuclear Physics, Vol. 10). Singapore:World Scientific, 2016.
    [15] SCHIFFER J P, FREEMAN S J, CAGGIANO J A, et al. Phys Rev Lett, 2004, 92:162501.
    [16] COTTLE P D, KEMPER K W. Phys Rev C, 1998, 58:3761.
    [17] OTSUKA T, MATSUO T, ABE D. Phys Rev Lett, 2006, 97:162501.
    [18] BROWN B A, DUGUET T, OTSUKA T, et al. Phys Rev C, 2006, 74:061303.
    [19] BRINK D M, STANCU F. Phys Rev C, 2007, 75:064311.
    [20] COLÒ G, SAGAWA H, FRACASSO S, et al. Phys Lett B, 2007, 646:227.
    [21] ZOU W, COLÒ G, MA Z Y, et al. Phys Rev C, 2008, 77:014314.
    [22] ANGUIANO M, GRASSO M, CO'G, et al. Phys Rev C, 2012, 86:054302.
    [23] LONG W H, SAGAWA H, VAN GIAI N, et al. Phys Rev C, 2007, 76:034314.
    [24] LONG W H, SAGAWA H, MENG J, et al. Europhys Lett, 2008, 82:12001.
    [25] WANG L J, DONG J M, LONG W H. Phys Rev C, 2013, 87:047301.
    [26] MARCOS S, LOPEZ-QUELLE M, NIEMBRO R, et al. Phys At Nucl, 2014, 77:299.
    [27] LOPEZ-QUELLE M, MARCOS S, NIEMBRO R, et al. Nucl Phys A, 2018, 971:149.
    [28] TARPANOV D, LIANG H Z, VAN GIAI N, et al. Phys Rev C, 2008, 77, 054316.
    [29] MORENO-TORRES M, GRASSO M, LIANG H Z, et al. Phys Rev C, 2010, 81:064327.
    [30] BAI C L, SAGAWA H, ZHANG H Q, et al. Phys Lett B, 2009, 675:28.
    [31] BAI C L, ZHANG H Q, SAGAWA H, et al. Phys Rev Lett, 2010, 105:072501.
    [32] CAO L G, COLÒ G, SAGAWA H, et al. Phys Rev C, 2009, 80:064304.
    [33] MINATO F, BAI C L. Phys Rev Lett, 2010, 110:122501.
    [34] SAGAWA H, COLÒ G. Prog Part Nucl Phys, 2014, 76:76.
    [35] LALAZISSIS G A, KARATZIKOS S, SERRA M, et al. Phys Rev C, 2009, 80:041301(R).
    [36] LITVINOVA E V, AFANASJEV A V. Phys Rev C, 2011, 84:014305.
    [37] CAO L G, COLÒ G, SAGAWA H, et al. Phys Rev C, 2014, 89:044314.
    [38] AFANASJEV A V, LITVINOVA E. Phys Rev C, 2015, 92:044317.
    [39] WAKASA T, OKAMOTO M, DOZONO M, et al. Phys. Rev. C 85, 064606(2012).
    [40] LIANG H Z, ZHAO P W, MENG J. Phys Rev C, 2012, 85:064302.
    [41] LIANG H Z, VAN GIAI N, MENG J. Phys Rev Lett, 2008, 101:122502.
    [42] WANG Z H. Analysis of Tensor-Force Effects in Covariant Density Functional Theory[D]. Lanzhou:Lanzhou University, 2018. (in Chinese) (王之恒. 协变密度泛函理论中的张量力效应研究[D]. 兰州:兰州大学, 2018.)
    [43] WANG Z H, ZHAO Q, LIANG H Z, et al. Phys. Rev. C, 2018, 98:034313.
    [44] SHEN S H. Relativistic Brueckner-Hartree-Fock Theory for Finite Nuclei[D]. Beijing:Peking University, 2017. (in Chinese) (申时行. 原子核的相对论Brueckner-Hartree-Fock理论[D]. 北京:北京大学, 2017.)
    [45] SHEN S H, HU J N, LIANG H Z, et al. Chin Phys Lett, 2016, 33:102103.
    [46] SHEN S H, LIANG H Z, MENG J, et al. Phys Rev C, 2017, 96:014316.
    [47] SHEN S H, LIANG H Z, MENG J, et al. Phys Lett B, 2018, 778:344.
    [48] SHEN S H, LIANG H Z, MENG J, et al. Phys Rev C, 2018, 97:054312.
    [49] SHEN S H, LIANG H Z, MENG J, et al. Phys Lett B, 2018, 781:227.
    [50] JIANG L J, YANG S, SUN B Y, et al. Phys Rev C, 2015, 91:034326.
    [51] JIANG L J, YANG S, DONG J M, et al. Phys Rev C, 2015, 91:025802.
    [52] LONG W H, VAN GIAI N, MENG J. Phys Lett B, 2006, 640:150.
    [53] SUN B Y, LONG W H, MENG J,et al. Phys Rev C, 2008, 78:065805.
    [54] ZHAO Q, SUN B Y, LONG W H. J. Phys. G:Nucl. Part. Phys., 2015, 42:095101.
    [55] LIU Z W, QIAN Z, XING R Y, et al. Phys Rev C, 2018, 97:025801.
    [56] LONG W H, SAGAWA H, MENG J, et al. Phys Lett B, 2006, 639:242.
    [57] LIANG H Z, LONG W H, MENG J, et al. Eur Phys J A, 2010, 44:119.
    [58] LIANG H Z, MENG J, ZHOU S G. Phys Rep, 2015, 570:1.
    [59] LONG W H, RING P, MENG J, et al. Phys Rev C, 2010, 81:031302.
    [60] LI J J, LONG W H, SONG J L, et al. Phys Rev C, 2016, 93:054312.
    [61] EBRAN J P, KHAN E, PEÑA ARTEAGA D, et al. Phys Rev C, 2011, 83:064323.
    [62] LI J J, LONG W H, MARGUERON J, et al. Phys Lett B, 2014, 732:169.
    [63] LI J J, MARGUERON J, LONG W H, et al. Phys Lett B, 2016, 753:97.
    [64] LI J J, LONG W H, MARGUERON J, et al. Phys Lett B, 2018, 788:192.
    [65] LIANG H Z, GIAI N V, MENG J. Phys Rev C, 2009, 79:064306.
    [66] GU H Q, LIANG H Z, LONG W H, et al. Phys Rev C, 2013,87:041301(R).
    [67] LIANG H Z, ZHAO P W, RING P, et al. Phys Rev C, 2012, 86:021302(R).
    [68] NIU Z M, NIU Y F, LIANG H Z, et al. Phys Rev C, 2017, 95:044301.
    [69] NIU Z M, NIU Y F, LIANG H Z, et al. Phys Lett B, 2013, 723:172.
    [70] LONG W H, SUN B Y, HAGINO K, et al. Phys Rev C, 2012, 85:025806.
    [71] LI J J, SEDRAKIAN A, WEBER F. Phys Lett B, 2018, 783:234.
    [72] LI J J, LONG W H, SEDRAKIAN A. Eur Phys J A, 2018, 54:133.
    [73] FOLDY L L, WOUTHUYSEN S A. Phys Rev, 1950, 78:29.
    [74] CARLSON J, GANDOLFI S, PEDERIVA F, et al. Rev Mod Phys, 2015, 87:1067.
    [75] RAMOS A, POLLS A, DICKHOFF W. Nucl Phys A, 1989, 503:1.
    [76] ZHENG D C, BARRETT B R, JAQUA L, et al. Phys Rev C, 1993, 48:1083.
    [77] MÜLLER H M, KOONIN S E, SEKI R, et al. Phys Rev C, 2000, 61:044320.
    [78] TSUKIYAMA K, BOGNER S K, SCHWENK A. Phys Rev Lett, 2011, 106:222502.
    [79] LIU L, OTSUKA T, SHIMIZU N, et al. Phys Rev C, 2012, 86:014302.
    [80] BRUECKNER K, LEVINSON C, MAHMOUD H. Phys Rev, 1954, 95:217.
    [81] DAY B D. Rev Mod Phys, 1967, 39:719.
    [82] COESTER F, COHEN S, DAY B D, et al. Phys Rev C, 1970, 1:769.
    [83] BROWN G E, JACKSON A, KUO T T S. Nucl Phys A, 1969, 133:481.
    [84] FUJITA J, MIYAZAWA H. Prog Theor Phys, 1957, 17:360.
    [85] ANASTASIO M, CELENZA L, PONG W, et al. Phys Rep, 1983, 100:327.
    [86] TER HAAR B, MALFLIET R. Phys Rep, 1987, 149:207.
    [87] MALFLIET R. Prog Part Nucl Phys, 1988, 21:207.
    [88] MACHLEIDT R. Adv Nucl Phys, 1989, 19:189.
    [89] BROCKMANN R, MACHLEIDT R. Phys Rev C, 1990, 42:1965.
    [90] BROWN G E, WEISE W, BAYM G, et al. Comments Nucl Part Phys, 1987, 17:39.
    [91] ZUO W, LEJEUNE A, LOMBARDO U, et al. Nucl Phys A, 2002, 706:418.
    [92] MÜTHER H, MACHLEIDT R, BROCKMANN R. Phys Lett B, 1988, 202:483.
    [93] MÜTHER H, MACHLEIDT R, BROCKMANN R. Phys Rev C, 1990, 42:1981.
    [94] BROCKMANN R, TOKI H. Phys Rev Lett, 1992, 68:3408.
    [95] LIANG H Z. Proc. Sci., 2016, INPC2016:361.
    [96] BETHE H A, GOLDSTONE J. Proc R Soc London Ser A, 1957, 238:551.
    [97] HOHENBERG P, KOHN W. Phys Rev, 1964, 136:B864.
    [98] KUTZELNIGG W. J Mol Struct, 2006, 768:163.
    [99] DRUT J E, FURNSTAHL R J, PLATTER L. Prog Part Nucl Phys, 2010, 64:120.
    [100] LIANG H Z, NIU Y F, HATSUDA T. Phys Lett B, 2018, 779:436.
  • 加载中
计量
  • 文章访问数:  1590
  • HTML全文浏览量:  192
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-20
  • 修回日期:  2018-10-24
  • 刊出日期:  2020-05-03

协变密度泛函理论中的张量力效应

doi: 10.11804/NuclPhysRev.35.04.390
    基金项目:  日本学术振兴会资助项目(18K13549);国家自然科学基金委员会与日本学术振兴会合作项目(11711540016)
    作者简介:

    梁豪兆(1982-),男,广东广州人,博士,研究员,博士生导师,从事原子核理论研究;E-mail:haozhao.liang@riken.jp。

  • 中图分类号: O571.53

摘要: 张量力是核子-核子相互作用的重要成分,被认为是理解奇特原子核中壳结构演化规律的关键要素。然而,目前对于核介质中的张量力及其效应的定量认识,仍存在很多亟待解决的关键问题。着重梳理了在原子核密度泛函理论框架下,研究有效相互作用中的张量力成分以及相应的张量力效应的相关工作,重点包括:基于相对论Hartree-Fock理论,以同位素链中的质子幻数壳演化为例,定量提取与分析其中的张量力效应;以及基于第一性原理的相对论Brueckner-Hartree-Fock理论,以中子滴单粒子能谱中的自旋-轨道劈裂演化为例,提出与张量力效应相关联的"准实验数据"。最后,展望原子核密度泛函理论今后可能的发展策略。


Tensor force is one of the most important components of the nucleon-nucleon interaction. It plays a critical role in understanding the shell evolution in exotic nuclei. However, there are still several puzzles concerning the tensor force and its effects in the nuclear medium. In this paper, we mainly focus on the studies of tensor force in the effective interactions and its effects in finite nuclear systems within the scheme of nuclear density functional theory. In particular, we highlight the recent developments, including the quantitative analysis of tensor effects in the relativistic Hartree-Fock theory by taking the evolution of proton magic shells in the isotopic chains as an example, and the "meta-data" of tensor effects provided by the ab initio relativistic Brueckner-Hartree-Fock theory by taking the evolution of spin-orbit splitting in the single-particle spectra of neutron drops as an example. Perspectives are focused on the possible strategies for the future developments of nuclear density functional theory.

English Abstract

梁豪兆, 申时行, 王之恒. 协变密度泛函理论中的张量力效应[J]. 原子核物理评论, 2018, 35(4): 390-400. doi: 10.11804/NuclPhysRev.35.04.390
引用本文: 梁豪兆, 申时行, 王之恒. 协变密度泛函理论中的张量力效应[J]. 原子核物理评论, 2018, 35(4): 390-400. doi: 10.11804/NuclPhysRev.35.04.390
LIANG Haozhao, SHEN Shihang, WANG Zhiheng. Effects of Tensor Force in Covariant Density Functional Theory[J]. Nuclear Physics Review, 2018, 35(4): 390-400. doi: 10.11804/NuclPhysRev.35.04.390
Citation: LIANG Haozhao, SHEN Shihang, WANG Zhiheng. Effects of Tensor Force in Covariant Density Functional Theory[J]. Nuclear Physics Review, 2018, 35(4): 390-400. doi: 10.11804/NuclPhysRev.35.04.390
参考文献 (100)

目录

    /

    返回文章
    返回