高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正负电子湮灭过程的核子激发态N*产生(英文)

邹冰松 代建平

邹冰松, 代建平. 正负电子湮灭过程的核子激发态N*产生(英文)[J]. 原子核物理评论, 2018, 35(4): 369-373. doi: 10.11804/NuclPhysRev.35.04.369
引用本文: 邹冰松, 代建平. 正负电子湮灭过程的核子激发态N*产生(英文)[J]. 原子核物理评论, 2018, 35(4): 369-373. doi: 10.11804/NuclPhysRev.35.04.369
ZOU Bingsong, DAI Jianping. N* Production from e+e- Annihilations[J]. Nuclear Physics Review, 2018, 35(4): 369-373. doi: 10.11804/NuclPhysRev.35.04.369
Citation: ZOU Bingsong, DAI Jianping. N* Production from e+e- Annihilations[J]. Nuclear Physics Review, 2018, 35(4): 369-373. doi: 10.11804/NuclPhysRev.35.04.369

正负电子湮灭过程的核子激发态N*产生(英文)

doi: 10.11804/NuclPhysRev.35.04.369
基金项目: 国家自然科学基金资助项目(11505111,11621131001,11835015,11747601)
详细信息
  • 中图分类号: O571.6;P142.9

N* Production from e+e- Annihilations

Funds: National Natural Science Foundation of China(11505111, 11621131001, 11835015, 11747601)
  • 摘要: 目前,正负电子湮灭过程的核子激发态N*产生的实验数据主要来自于粲偶素能区。粲偶素衰变到核子激发态过程类似于其类时电磁形状因子测量过程,正反粲夸克短程湮灭提供了近乎于点源的胶子强子化过程。与γNeNπN反应互补,这一新的N*产生源具有同位旋和低自旋筛选的优势。综述了正负电子湮灭过程的核子激发态N*产生的实验情况和相关的唯象进展,同时讨论未来发展的一些新方向,如正负电子湮灭过程的核子激发态N*产物的一些新来源等。


    Up to now, the N* production from e+e- annihilations has been studied only around charmonium region. Charmonium decays to N*s are analogous to (time-like) EM form factors in that the charm quark annihilation provides a nearly pointlike (ggg) current. Complementary to other sources, such as πN, eN and γN reactions, this new source for N* spectroscopy has a few advantages, such as an isospin filter and a low spin filter. The experimental results on N* from e+e- annihilations and their phenomenological implications are reviewed. Possible new sources on N* production from e+e- annihilations are discussed.
  • [1] KLEMPT E, RICHARD J M. Rev Mod Phys, 2010, 82:1095.
    [2] AZNAURYAN I G, BURKERT V D. Prog Part Nucl Phys, 2012, 67:1.
    [3] CREDE V, ROBERTS W. Rept Prog Phys, 2013, 76:076301.
    [4] PATRIGNANI C[Particle Data Group]. Chin Phys C, 2016, 40:100001.
    [5] CAPSTICK S, ROBERT W. Prog Part Nucl Phys, 2000, 45:241, and references therein.
    [6] OLLER J A, OSET E, RAMOS A. Prog Part Nucl Phys, 2000, 45:157.
    [7] KAISER N, SIEGEL P B, WEISE W. Nucl Phys A, 1995, 594:325.
    [8] OLLER J A, MEISSNER U G. Phys Lett B, 2001, 500:263.
    [9] INOUE T, OSET E, VICENTE VACAS M J. Phys Rev C, 2002, 65:035204.
    [10] GARCIA-RECIO C, LUTZ M F M, NIEVES J. Phys Lett B, 2004, 582:49.
    [11] HYODO T, NAM S I, JIDO D, et al. Phys Rev C, 2003, 68:018201.
    [12] ZOU B S. Eur Phys J A, 2008, 35:325.
    [13] LIU B C, ZOU B S. Phys Rev Lett, 2006, 96:042002; LIU B C, ZOU B S. Phys Rev Lett, 2007, 98:039102.
    [14] HELMINEN C, RISKA D O. Nucl Phys A, 2002, 699:624.
    [15] LI H B.[BES Collaboration]. Nucl Phys A, 2000, 675:189; ZOU B S.[BES Collaboration]. Excited Nucleons and Hadronic Structure, Proc. of NSTAR2000 Conf. at JLab, Feb 2000. Eds. V. Burkert. et al. World Scientific 2001:155.
    [16] ZOU B S. Nucl Phys A, 2001, 684:330; Nucl Phys A, 2000, 675:167.
    [17] ASNER D M. Int J Mod Phys A, 2009, 24:1.
    [18] BAI J Z[BES Collaboration]. Phys Lett B, 2001, 510:75.
    [19] ABLIKIM M[BES Collaboration]. Phys Rev Lett, 2006, 97:062001.
    [20] ABLIKIM M[BES Collaboration]. Phys Rev D, 2009, 80:052004.
    [21] ABLIKIM M[BES Collaboration]. Phys Rev Lett, 2004, 93:112002; YANG H X[BES Collaboration]. Int J Mod PhyS A, 2005, 20:1985.
    [22] ABLIKIM M[BES Collaboration]. Phys Lett B, 2008, 659:789.
    [23] ABLIKIM M[BES Collaboration]. Eur Phys J C, 2008, 53:15; ABLIKIM M[BESⅢ Collaboration]. Phys Rev D, 2013, 87:112004.
    [24] ABLIKIM M[BESⅢ Collaboration]. Phys Rev D, 2016, 93:052010.
    [25] ABLIKIM M[BESⅢ Collaboration]. Phys Rev D, 2014, 90:052009; Erratum, Phys Rev D, 2015, 91:039901(E).
    [26] ABLIKIM M[BESⅢ Collaboration]. Phys Rev D, 2013, 88:032010.
    [27] ABLIKIM M[BES Collaboration]. Phys Rev D, 2006, 74:012004.
    [28] ABLIKIM M[BESⅢ Collaboration]. Phys Rev Lett, 2013, 110:022001.
    [29] ABLIKIM M[BESⅢ Collaboration]. Phys Rev D, 2013, 87:012007.
    [30] ABLIKIM M[BESⅢ Collaboration]. Phys Rev D, 2012, 86:052011.
    [31] ABLIKIM M[BESⅢ Collaboration]. Phys Rev D, 2014, 90:032007.
    [32] ALEXANDER J P[CLEO Collaboration]. Phys Rev D, 2010, 82:092002.
    [33] WU J J, MOLINA R, OSET E, et al. Phys Rev Lett, 2010, 105:232001.
    [34] WU J J, MOLINA R, OSET E, et al. Phys Rev C, 2011, 84:015202.
    [35] WU J J, ZHAO L, ZOU B S. Phys Lett B, 2012, 709:70.
    [36] AAIJ R[LHCb Collaboration]. Phys Rev Lett, 2015, 115:072001.
    [37] ABLIKIM M[BESⅢ Collaboration]. Phys Rev Lett, 2013, 110:252001.
    [38] ABLIKIM M[BESⅢ Collaboration]. Phys Rev Lett, 2013, 111:242001.
    [39] CHEN H X, CHEN W, LIU X, et al. Phys Rept, 2016, 639:1.
    [40] GUO F K, HANHART C, MEISNER U G, et al. Rev Mod Phys, 2018, 90:015004.
    [41] LIN Y H, SHEN C W, GUO F K, et al. Phys Rev D, 2017, 95:114017.
    [42] HE J. Phys Rev D, 2017, 95:074031.
    [43] LIN Y H, SHEN C W, ZOU B S. Nucl. Phys. A, 2018, 980:21.
    [44] ABLIKIM M[BESⅢ Collaboration]. Phys Rev D, 2012, 86:032008.
    [45] ABLIKIM M[BESⅢ Collaboration]. Phys Rev D, 2013, 88:112007.
    [46] ABLIKIM M[BESⅢ Collaboration]. Phys Rev D, 2015, 91:092006.
    [47] PRAKHOV S, NEFKENS B M K, BEKRENEV V, et al. Phys Rev C, 2009, 80:025204.
    [48] GAO P, SHI J, ZOU B S. Phys Rev C, 2012, 86:025201.
    [49] YANG S B[Belle Collaboration]. Phys Rev Lett, 2016, 117:011801.
    [50] LIU B C, XIE J J. Phys Rev C, 2012, 86:055202.
  • 加载中
计量
  • 文章访问数:  1266
  • HTML全文浏览量:  139
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-18
  • 刊出日期:  2020-05-03

正负电子湮灭过程的核子激发态N*产生(英文)

doi: 10.11804/NuclPhysRev.35.04.369
    基金项目:  国家自然科学基金资助项目(11505111,11621131001,11835015,11747601)
  • 中图分类号: O571.6;P142.9

摘要: 目前,正负电子湮灭过程的核子激发态N*产生的实验数据主要来自于粲偶素能区。粲偶素衰变到核子激发态过程类似于其类时电磁形状因子测量过程,正反粲夸克短程湮灭提供了近乎于点源的胶子强子化过程。与γNeNπN反应互补,这一新的N*产生源具有同位旋和低自旋筛选的优势。综述了正负电子湮灭过程的核子激发态N*产生的实验情况和相关的唯象进展,同时讨论未来发展的一些新方向,如正负电子湮灭过程的核子激发态N*产物的一些新来源等。


Up to now, the N* production from e+e- annihilations has been studied only around charmonium region. Charmonium decays to N*s are analogous to (time-like) EM form factors in that the charm quark annihilation provides a nearly pointlike (ggg) current. Complementary to other sources, such as πN, eN and γN reactions, this new source for N* spectroscopy has a few advantages, such as an isospin filter and a low spin filter. The experimental results on N* from e+e- annihilations and their phenomenological implications are reviewed. Possible new sources on N* production from e+e- annihilations are discussed.

English Abstract

邹冰松, 代建平. 正负电子湮灭过程的核子激发态N*产生(英文)[J]. 原子核物理评论, 2018, 35(4): 369-373. doi: 10.11804/NuclPhysRev.35.04.369
引用本文: 邹冰松, 代建平. 正负电子湮灭过程的核子激发态N*产生(英文)[J]. 原子核物理评论, 2018, 35(4): 369-373. doi: 10.11804/NuclPhysRev.35.04.369
ZOU Bingsong, DAI Jianping. N* Production from e+e- Annihilations[J]. Nuclear Physics Review, 2018, 35(4): 369-373. doi: 10.11804/NuclPhysRev.35.04.369
Citation: ZOU Bingsong, DAI Jianping. N* Production from e+e- Annihilations[J]. Nuclear Physics Review, 2018, 35(4): 369-373. doi: 10.11804/NuclPhysRev.35.04.369
参考文献 (50)

目录

    /

    返回文章
    返回