高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用重离子径迹模版法制备出的钯纳米线阵列的表面等离激元共振现象研究(英文)

赵丛 黄科京 吕双宝 徐国恒 程宏伟 刘杰 姚会军 孙友梅 徐丽君 段敬来

赵丛, 黄科京, 吕双宝, 徐国恒, 程宏伟, 刘杰, 姚会军, 孙友梅, 徐丽君, 段敬来. 利用重离子径迹模版法制备出的钯纳米线阵列的表面等离激元共振现象研究(英文)[J]. 原子核物理评论, 2018, 35(3): 313-320. doi: 10.11804/NuclPhysRev.35.03.313
引用本文: 赵丛, 黄科京, 吕双宝, 徐国恒, 程宏伟, 刘杰, 姚会军, 孙友梅, 徐丽君, 段敬来. 利用重离子径迹模版法制备出的钯纳米线阵列的表面等离激元共振现象研究(英文)[J]. 原子核物理评论, 2018, 35(3): 313-320. doi: 10.11804/NuclPhysRev.35.03.313
ZHAO Cong, HUANG Kejing, LYU Shuangbao, XU Guoheng, CHENG Hongwei, LIU Jie, YAO Huijun, SUN Youmei, XU Lijun, DUAN Jinglai. Surface Plasmon Resonances of Palladium Nanowire Arrays Prepared by Ion Track Technology[J]. Nuclear Physics Review, 2018, 35(3): 313-320. doi: 10.11804/NuclPhysRev.35.03.313
Citation: ZHAO Cong, HUANG Kejing, LYU Shuangbao, XU Guoheng, CHENG Hongwei, LIU Jie, YAO Huijun, SUN Youmei, XU Lijun, DUAN Jinglai. Surface Plasmon Resonances of Palladium Nanowire Arrays Prepared by Ion Track Technology[J]. Nuclear Physics Review, 2018, 35(3): 313-320. doi: 10.11804/NuclPhysRev.35.03.313

利用重离子径迹模版法制备出的钯纳米线阵列的表面等离激元共振现象研究(英文)

doi: 10.11804/NuclPhysRev.35.03.313
基金项目: 中国科学院前沿科学重点研究项目(QYZDB-SSW-SLH010);国家自然科学基金资助项目(11375241,11474240,11575261)
详细信息
  • 中图分类号: O571.33

Surface Plasmon Resonances of Palladium Nanowire Arrays Prepared by Ion Track Technology

Funds: Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SLH010); National Natural Science Foundation of China (11375241, 11474240, 11575261)
  • 摘要: 利用电化学沉积在重离子径迹模版中制备出了不同直径的一维钯纳米线。利用扫描电子显微镜、透射电子显微镜和X射线衍射等多多种手段对制得的钯纳米线进行了形貌和结构表征。利用紫外可见光谱仪分析了钯纳米线的光学响应,发现钯纳米线存在表面等离子体共振现象。随着纳米线直径和长度的增加,其表面等离子体共振峰位发生红移;通过改变光谱测试中激发光的入射角度,其表面等离激元共振模式会随着角度的增大而变多,这可能是在横向振动模式的基础上激发了沿纳米线长度方向振动的纵向模式。与此同时,基于时域有限差分法对钯纳米线的表面等离子体共振特性进行数值模拟,结果与实验符合较好。


    Palladium nanowires with varied diameters were fabricated using ion-track templates coupled with electrochemical deposition. The morphology and crystallographic structure were characterized with Scanning Electron Microscopy, Transmission Electron Microscopy, X-ray diffraction (XRD). The plasmonic responses of the as-prepared nanowires were investigated by UV-Vis-NIR spectroscopy and the simulations based on the finite-difference time-domain algorithm. The results demonstrate that the surface plasmon resonances of Pd nanowire are sensitive to the wire geometry, but also influenced by the incidence angle of light. The frequency of the transverse dipolar plasmon resonance of nanowire arrays shifts within a wide range from visible to near infrared. With increasing of wires' diameter or length, the resonance peak shifts to the red. With increasing of incident angle, a new peak appears, which is possibly assigned to the excitation of the longitudinal resonance. In addition, numerical simulations disclose that propagating surface plasmon polaritons can be excited on the palladium nanowires and the wavelength of the resonance peak is in good agreement with the experimental results.
  • [1] STEWART M E, ANDERTON C R, THOMPSON L B, et al. Chemical Reviews, 2008, 108(2):494.
    [2] TSUJI J. Palladium Reagents and Catalysts:New Perspectives for the 21st Century[M]. Hoboken:John Wiley & Sons, 2006.
    [3] FLANAGAN T B, OATES W A. Annual Review of Materials Science, 1991, 21(1):269.
    [4] HÜBERT T, BOON B L, BLACK G, et al. Sensors and Actuators B:Chemical, 2011, 157(2):329.
    [5] ZORIC I, LARSSON E M, KASEMO B, et al. Advanced Materials, 2010, 22(41):4628.
    [6] LIU N, TANG M L, HENTSCHEL M, et al. Nature Materials, 2011, 10(8):631.
    [7] KREIBIG U, VOLLMER M. Theoretical Considerations[M]. Berlin:Springer, Heidelberg, 1995:13.
    [8] GU F, ZENG H, ZHU Y B, et al. Advanced Optical Materials, 2014, 2(2):189.
    [9] DUAN J L, CORNELIUS T W, LIU J, et al. Journal of Physical Chemistry C, 2009, 113(31):13583.
    [10] TASALTIN N, ÖZTÜRK S, KILINC N, et al. Nanoscale Research Letters, 2010, 5(7):1137.
    [11] CHENG F, WANG H, SUN Z, et al. Electrochemistry Communications, 2008, 10(5):798.
    [12] XU C W, WANG H, SHEN P K, et al. Advanced Materials, 2007, 19(23):4256.
    [13] KARTOPU G, HABOUTI S, ES-SOUNI M. Materials Chemistry and Physics, 2008, 107(2-3):226.
    [14] WANG H, XU C, CHENG F, et al. Electrochemistry Communications, 2007, 9(5):1212.
    [15] CHEREVKO S, FU J, KULYK N, et al. Journal of Nanoscience and Nanotechnology, 2009, 9(5):3154.
    [16] KIM K, KIM M, CHO S M. Materials Chemistry and Physics, 2006, 96(2-3):278.
    [17] KOENIGSMANN C, SANTULLI A C, SUTTER E, et al. ACS Nano, 2011, 5(9):7471.
    [18] ZHANG L, GUO S, DONG S, et al. Analytical Chemistry, 2012, 84(8):3568.
    [19] MENKE E J, THOMPSON M A, XIANG C, et al. Nature Materials, 2006, 5(11):914.
    [20] INGUANTA R, PIAZZA S, SUNSERI C. Electrochemistry Communications, 2009, 11(7):1385.
    [21] KANG H, JUN Y, PARK J I, et al. Chemistry of Materials, 2000, 12(12):3530.
    [22] SHI Z, WU S, SZPUNAR J A. Nanotechnology, 2006, 17(9):2161.
    [23] DUAN J, LYU S, YAO H, et al. Nanoscale Research Letters, 2015, 10(1):481.
    [24] STEWART M E, ANDERTON C R, THOMPSON L B, et al. Chemical Reviews, 2008, 108(2):494.
    [25] TSUJI J. Palladium Reagents and Catalysts:New Perspectives for the 21st Century[M]. Hoboken:John Wiley & Sons, 2006.
    [26] FLANAGAN T B, OATES W A. Annual Review of Materials Science, 1991, 21(1):269.
    [27] VAN Der Zande, BIANCA M I, FOKKINK L G, et al. Langmuir, 2000, 16(2):451.
    [28] ATAY T, SONG J H, NURMIKKO A V. Nano Letters, 2004, 4(9):1627.
    [29] WEI Q H, SU K H, DURANT S, et al. Nano Letters, 2004, 4(6):1067.
    [30] KOTTMANN J P, MARTIN O J F. Optics Express, 2001, 8(12):655.
    [31] SU K H, WEI Q H, ZHANG X, et al. Nano Letters, 2003, 3(8):1087.
    [32] JAIN P K, HUANG W, EL-SAYED M A. Nano Letters, 2007, 7(7):2080.
    [33] JAIN P K, EL-SAYED M A. Nano Letters, 2007, 7(9):2854.
  • 加载中
计量
  • 文章访问数:  1346
  • HTML全文浏览量:  189
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-13
  • 修回日期:  2018-05-17
  • 刊出日期:  2018-09-20

利用重离子径迹模版法制备出的钯纳米线阵列的表面等离激元共振现象研究(英文)

doi: 10.11804/NuclPhysRev.35.03.313
    基金项目:  中国科学院前沿科学重点研究项目(QYZDB-SSW-SLH010);国家自然科学基金资助项目(11375241,11474240,11575261)
  • 中图分类号: O571.33

摘要: 利用电化学沉积在重离子径迹模版中制备出了不同直径的一维钯纳米线。利用扫描电子显微镜、透射电子显微镜和X射线衍射等多多种手段对制得的钯纳米线进行了形貌和结构表征。利用紫外可见光谱仪分析了钯纳米线的光学响应,发现钯纳米线存在表面等离子体共振现象。随着纳米线直径和长度的增加,其表面等离子体共振峰位发生红移;通过改变光谱测试中激发光的入射角度,其表面等离激元共振模式会随着角度的增大而变多,这可能是在横向振动模式的基础上激发了沿纳米线长度方向振动的纵向模式。与此同时,基于时域有限差分法对钯纳米线的表面等离子体共振特性进行数值模拟,结果与实验符合较好。


Palladium nanowires with varied diameters were fabricated using ion-track templates coupled with electrochemical deposition. The morphology and crystallographic structure were characterized with Scanning Electron Microscopy, Transmission Electron Microscopy, X-ray diffraction (XRD). The plasmonic responses of the as-prepared nanowires were investigated by UV-Vis-NIR spectroscopy and the simulations based on the finite-difference time-domain algorithm. The results demonstrate that the surface plasmon resonances of Pd nanowire are sensitive to the wire geometry, but also influenced by the incidence angle of light. The frequency of the transverse dipolar plasmon resonance of nanowire arrays shifts within a wide range from visible to near infrared. With increasing of wires' diameter or length, the resonance peak shifts to the red. With increasing of incident angle, a new peak appears, which is possibly assigned to the excitation of the longitudinal resonance. In addition, numerical simulations disclose that propagating surface plasmon polaritons can be excited on the palladium nanowires and the wavelength of the resonance peak is in good agreement with the experimental results.

English Abstract

赵丛, 黄科京, 吕双宝, 徐国恒, 程宏伟, 刘杰, 姚会军, 孙友梅, 徐丽君, 段敬来. 利用重离子径迹模版法制备出的钯纳米线阵列的表面等离激元共振现象研究(英文)[J]. 原子核物理评论, 2018, 35(3): 313-320. doi: 10.11804/NuclPhysRev.35.03.313
引用本文: 赵丛, 黄科京, 吕双宝, 徐国恒, 程宏伟, 刘杰, 姚会军, 孙友梅, 徐丽君, 段敬来. 利用重离子径迹模版法制备出的钯纳米线阵列的表面等离激元共振现象研究(英文)[J]. 原子核物理评论, 2018, 35(3): 313-320. doi: 10.11804/NuclPhysRev.35.03.313
ZHAO Cong, HUANG Kejing, LYU Shuangbao, XU Guoheng, CHENG Hongwei, LIU Jie, YAO Huijun, SUN Youmei, XU Lijun, DUAN Jinglai. Surface Plasmon Resonances of Palladium Nanowire Arrays Prepared by Ion Track Technology[J]. Nuclear Physics Review, 2018, 35(3): 313-320. doi: 10.11804/NuclPhysRev.35.03.313
Citation: ZHAO Cong, HUANG Kejing, LYU Shuangbao, XU Guoheng, CHENG Hongwei, LIU Jie, YAO Huijun, SUN Youmei, XU Lijun, DUAN Jinglai. Surface Plasmon Resonances of Palladium Nanowire Arrays Prepared by Ion Track Technology[J]. Nuclear Physics Review, 2018, 35(3): 313-320. doi: 10.11804/NuclPhysRev.35.03.313
参考文献 (33)

目录

    /

    返回文章
    返回