高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续碳纤维增强碳化硅的辐照效应

李洋 赵强 张峥 欧阳晓平

李洋, 赵强, 张峥, 欧阳晓平. 连续碳纤维增强碳化硅的辐照效应[J]. 原子核物理评论, 2017, 34(3): 636-640. doi: 10.11804/NuclPhysRev.34.03.636
引用本文: 李洋, 赵强, 张峥, 欧阳晓平. 连续碳纤维增强碳化硅的辐照效应[J]. 原子核物理评论, 2017, 34(3): 636-640. doi: 10.11804/NuclPhysRev.34.03.636
LI Yang, ZHAO Qiang, ZHANG Zheng, OUYANG Xiaoping. Radiation Effect of Continuous Carbon Fiber Reinforced SiliconCarbide[J]. Nuclear Physics Review, 2017, 34(3): 636-640. doi: 10.11804/NuclPhysRev.34.03.636
Citation: LI Yang, ZHAO Qiang, ZHANG Zheng, OUYANG Xiaoping. Radiation Effect of Continuous Carbon Fiber Reinforced SiliconCarbide[J]. Nuclear Physics Review, 2017, 34(3): 636-640. doi: 10.11804/NuclPhysRev.34.03.636

连续碳纤维增强碳化硅的辐照效应

doi: 10.11804/NuclPhysRev.34.03.636
基金项目: 中央高校基本科研业务费专项资金资助项目(2017MS079);国家自然科学基金资助项目(11275071,11305061)
详细信息
    作者简介:

    李洋(1993-),女,山东烟台人,硕士研究生,从事核能科学与工程研究;E-mail:liyang@ncepu.edu.cn

    通讯作者: 赵强,E-mail:qzhao@ncepu.edu.cn
  • 中图分类号: TL62+7;O4-39

Radiation Effect of Continuous Carbon Fiber Reinforced SiliconCarbide

Funds: Fundamental Research Funds for Central Universities(2017MS079); National Natural Science Foundation of China(11275071, 11305061)
More Information
    Corresponding author: 10.11804/NuclPhysRev.34.03.636
  • 摘要: 连续碳纤维增强碳化硅材料除了具有碳化硅材料固有的低中子活化性能,低衰变热性能和低氚渗透性能等优点以外,还具有密度低、线性膨胀系数小、高比强度、高比模量、耐高温、抗氧化、抗蠕变、抗热震、耐化学腐蚀、耐盐雾、优良的电磁波吸收特性等一系列优异性能,是各类核工程重要的潜在候选材料。在核聚变工程应用领域,连续碳纤维增强碳化硅材料作为第一壁材料不可避免地会受到各种辐射粒子的影响。研究清楚这些辐射粒子对它的辐照效应对其在核工程领域的安全使用至关重要。采用蒙特卡罗方法与分子动力学方法进行模拟计算,研究了氕、氘、氚和氦四种粒子对连续碳纤维增强碳化硅的辐照效应。SRIM和LAMMPS计算结果表明:当入射原子能量为100 eV,连续碳纤维增强碳化硅中碳的浓度在80%~85%时,氕、氘、氚和氦原子的溅射率存在最小值;入射粒子的种类对溅射率的影响显著,氦原子的溅射率大于氘原子和氚原子,而氘原子和氚原子的溅射率相差不大但均显著大于氕原子;溅射率随入射能量的增加先迅速增加后逐渐减小,氕、氘、氚和氦原子入射能量分别在200,400,600和800 eV时存在溅射率最大值;当氦原子入射能量为100 eV时,溅射率随入射角度的增加而逐渐减少。这些结果对连续碳纤维增强碳化硅材料在核工程上的应用具有一定的参考意义。


    Continuous carbon fiber reinforced silicon carbide material has the low neutron activation, low decay heat performance and tritium permeability, which are inherent performance of silicon carbide materials. It also has other advantages such as low density, small linear expansion coefficient, specific strength and specific modulus, high temperature resistance, oxidation resistance, creep resistance, thermal shock, resistance to chemical corrosion, salt fog resistance, excellent electromagnetic wave absorption properties, etc. It is an important potential candidate material in various field of nuclear engineering. In the field of nuclear fusion engineering applications, continuous carbon fiber reinforced silicon carbide as the first wall material will inevitably be bombarded by a variety of radiation particles. The radiation effect is critical to its safe use in nuclear engineering. The Monte Carlo method and the molecular dynamics method were used to study the radiation effect of protium, deuterium, tritium and helium on continuous carbon fiber reinforced silicon carbide. The SRIM and LAMMPS simulation results show that when the incident energy is 100 eV and the concentration of carbon in the continuous carbon fiber reinforced silicon carbide is about 80% ~ 85%, the sputtering yield of protium, deuterium, tritium and helium atoms have the minimum values. The kind of incident particle has a significant effect on the sputtering yield. The sputtering yield of helium atoms is larger than that of tritium atoms and deuterium atoms. There is not much difference between the sputtering yield of deuterium atoms and tritium atoms, and both the sputtering yield of deuterium atoms and tritium atoms are larger than that of protium atoms. The sputtering yield initially increases rapidly with the increase of the incident energy and then decreases gradually. The incident energy of the protium, deuterium, tritium and helium atoms has the maximum value of the sputtering yield at 200, 400, 600 and 800 eV, respectively. When the incident energy of helium atoms is 100 eV, the sputtering yield decreases while the increase of the incident angle. These results can provide a certain reference for the application of continuous carbon fiber reinforced silicon carbide materials in nuclear engineering.
  • [1] SUN Weizhong, ZHAO Chengli, LIU Huaming, et al. Nuclear Fusion and Plasma Physics, 2011, 31(1):85. (in Chinese) (孙伟中, 赵成利, 刘华敏, 等. 核聚变与等离子体物理, 2011, 31(1):85.)
    [2] MA Xiaoqiang, YUAN Daqing, XIA Haiou, et al. Atomic Energy Science and Technology, 2016, 50(2):219. (in Chinese) (马小强, 袁大庆, 夏海鸿, 等.原子能科学技术, 2016, 50(2):219.)
    [3] HUA Guomin, LI Dongyang. RSC Advances, 2015, 5(125):103686.
    [4] ZHANG Xiaofeng, LIU Weiliang, GUO Shuangquan, et al. Science and Technology Innovation Herald, 2010, 19(3):118. (in Chinese) (张小锋, 刘维良, 郭双全, 等.科技创新导报, 2010, 19(3):118.)
    [5] ZHOU Zhangjian, ZHONG Zhihong, SHEN Weiping, et al. Materials Review, 2005, 19(12):5. (in Chinese) (周张健, 钟志宏, 沈卫平, 等. 材料导报, 2005, 19(12):5.)
    [6] JONES R H, GIANCARLI L, HASEGAWA A, et al. Journal of Nuclear Materials, 2002, 307(3):1057.
    [7] HOPF C, JACOB W. Journal of Nuclear Materials, 2005, 342(1):141.
    [8] ITO A, NAKAMURA H. Thin Solid Films, 2007, 516(19):6553.
    [9] MARIAN J, ZEPEDA-RUIZ L A, COUTO N, et al. Journal of Applied Physics, 2007, 101(4):044506.
    [10] KOYANAGI T, OZAWA K, HINOKI T, et al. Journal of Nuclear Materials, 2014, 448(1-3):478.
    [11] SALONEN E, NORDLUND K, KEINONEN J, et al. Applied Surface Science, 2001, 184(1):387.
    [12] HONIG R E. Ionization Phenomena in Gases[M]. Amsterdam:North Holland Publishing Company, 1962:106.
    [13] SHIH C, KATOH Y, SNEAD L L, et al. Journal of Nuclear Materials, 2013, 439(1-3):192.
    [14] ROTH J, BOHDANSKY J, POSCHENRIEDER W, et al. Journal of Nuclear Materials, 1976, 63:222.
    [15] SONE K, SAIDOH M, NAKAMURA K, et al. Journal of Nuclear Materials, 1981, 98(3):270.
    [16] STOLLER R E, TOLOCZKO M B, Was G S, et al. Nucl Instr Meth B, 2013, 310:75.
    [17] Large-scale Atomic/Molecular Massively Parallel Simulator, LAMMPS, available at:http://lammps.sandia.gov.
    [18] Atomistix Toolkit-Virtual NanoLab, ATK-VNL, available at:http://quantumwise.com.
    [19] BOHDANSKY J, BAY H L, OTTENBERGER W. Journal of Nuclear Materials, 1978, 76:163.
    [20] TERSOFF J. Physical Review B, 1988, 37(12):6991.
    [21] JIN E, DU S, LI M, et al. Journal of Nuclear Materials, 2016, 479:504.
    [22] CHENOWETH K, CHEUNG S, VAN DUIN A C, et al. Journal of American Chemical Society, 2005, 127(19):7192.
  • 加载中
计量
  • 文章访问数:  1229
  • HTML全文浏览量:  148
  • PDF下载量:  287
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-20
  • 修回日期:  2017-05-13
  • 刊出日期:  2017-07-18

连续碳纤维增强碳化硅的辐照效应

doi: 10.11804/NuclPhysRev.34.03.636
    基金项目:  中央高校基本科研业务费专项资金资助项目(2017MS079);国家自然科学基金资助项目(11275071,11305061)
    作者简介:

    李洋(1993-),女,山东烟台人,硕士研究生,从事核能科学与工程研究;E-mail:liyang@ncepu.edu.cn

    通讯作者: 赵强,E-mail:qzhao@ncepu.edu.cn
  • 中图分类号: TL62+7;O4-39

摘要: 连续碳纤维增强碳化硅材料除了具有碳化硅材料固有的低中子活化性能,低衰变热性能和低氚渗透性能等优点以外,还具有密度低、线性膨胀系数小、高比强度、高比模量、耐高温、抗氧化、抗蠕变、抗热震、耐化学腐蚀、耐盐雾、优良的电磁波吸收特性等一系列优异性能,是各类核工程重要的潜在候选材料。在核聚变工程应用领域,连续碳纤维增强碳化硅材料作为第一壁材料不可避免地会受到各种辐射粒子的影响。研究清楚这些辐射粒子对它的辐照效应对其在核工程领域的安全使用至关重要。采用蒙特卡罗方法与分子动力学方法进行模拟计算,研究了氕、氘、氚和氦四种粒子对连续碳纤维增强碳化硅的辐照效应。SRIM和LAMMPS计算结果表明:当入射原子能量为100 eV,连续碳纤维增强碳化硅中碳的浓度在80%~85%时,氕、氘、氚和氦原子的溅射率存在最小值;入射粒子的种类对溅射率的影响显著,氦原子的溅射率大于氘原子和氚原子,而氘原子和氚原子的溅射率相差不大但均显著大于氕原子;溅射率随入射能量的增加先迅速增加后逐渐减小,氕、氘、氚和氦原子入射能量分别在200,400,600和800 eV时存在溅射率最大值;当氦原子入射能量为100 eV时,溅射率随入射角度的增加而逐渐减少。这些结果对连续碳纤维增强碳化硅材料在核工程上的应用具有一定的参考意义。


Continuous carbon fiber reinforced silicon carbide material has the low neutron activation, low decay heat performance and tritium permeability, which are inherent performance of silicon carbide materials. It also has other advantages such as low density, small linear expansion coefficient, specific strength and specific modulus, high temperature resistance, oxidation resistance, creep resistance, thermal shock, resistance to chemical corrosion, salt fog resistance, excellent electromagnetic wave absorption properties, etc. It is an important potential candidate material in various field of nuclear engineering. In the field of nuclear fusion engineering applications, continuous carbon fiber reinforced silicon carbide as the first wall material will inevitably be bombarded by a variety of radiation particles. The radiation effect is critical to its safe use in nuclear engineering. The Monte Carlo method and the molecular dynamics method were used to study the radiation effect of protium, deuterium, tritium and helium on continuous carbon fiber reinforced silicon carbide. The SRIM and LAMMPS simulation results show that when the incident energy is 100 eV and the concentration of carbon in the continuous carbon fiber reinforced silicon carbide is about 80% ~ 85%, the sputtering yield of protium, deuterium, tritium and helium atoms have the minimum values. The kind of incident particle has a significant effect on the sputtering yield. The sputtering yield of helium atoms is larger than that of tritium atoms and deuterium atoms. There is not much difference between the sputtering yield of deuterium atoms and tritium atoms, and both the sputtering yield of deuterium atoms and tritium atoms are larger than that of protium atoms. The sputtering yield initially increases rapidly with the increase of the incident energy and then decreases gradually. The incident energy of the protium, deuterium, tritium and helium atoms has the maximum value of the sputtering yield at 200, 400, 600 and 800 eV, respectively. When the incident energy of helium atoms is 100 eV, the sputtering yield decreases while the increase of the incident angle. These results can provide a certain reference for the application of continuous carbon fiber reinforced silicon carbide materials in nuclear engineering.

English Abstract

李洋, 赵强, 张峥, 欧阳晓平. 连续碳纤维增强碳化硅的辐照效应[J]. 原子核物理评论, 2017, 34(3): 636-640. doi: 10.11804/NuclPhysRev.34.03.636
引用本文: 李洋, 赵强, 张峥, 欧阳晓平. 连续碳纤维增强碳化硅的辐照效应[J]. 原子核物理评论, 2017, 34(3): 636-640. doi: 10.11804/NuclPhysRev.34.03.636
LI Yang, ZHAO Qiang, ZHANG Zheng, OUYANG Xiaoping. Radiation Effect of Continuous Carbon Fiber Reinforced SiliconCarbide[J]. Nuclear Physics Review, 2017, 34(3): 636-640. doi: 10.11804/NuclPhysRev.34.03.636
Citation: LI Yang, ZHAO Qiang, ZHANG Zheng, OUYANG Xiaoping. Radiation Effect of Continuous Carbon Fiber Reinforced SiliconCarbide[J]. Nuclear Physics Review, 2017, 34(3): 636-640. doi: 10.11804/NuclPhysRev.34.03.636
参考文献 (22)

目录

    /

    返回文章
    返回