

《原子核物理评论》

www.npr.ac.cn Nuclear Physics Review

Started in 1984

利用GEANT4研究轻带电粒子诱发反应出射中子双微分产额

张鑫 陈志强 刘丙岩 韩瑞 田国玉 石福栋 孙慧

Geant4 Simulations of Neutron Production Double Differential Yields in Light Charged Particle Induced Reaction

ZHANG Xin, CHEN Zhiqiang, LIU Bingyan, HAN Rui, TIAN Guoyu, SHI Fudong, SUN Hui

在线阅读 View online: https://doi.org/10.11804/NuclPhysRev.37.2019CNPC48

引用格式:

张鑫,陈志强,刘丙岩,韩瑞,田国玉,石福栋,孙慧.利用GEANT4研究轻带电粒子诱发反应出射中子双微分产额[J].原子核 物理评论, 2020, 37(3):617-620. doi: 10.11804/NuclPhysRev.37.2019CNPC48

ZHANG Xin, CHEN Zhiqiang, LIU Bingyan, HAN Rui, TIAN Guoyu, SHI Fudong, SUN Hui. Geant4Simulations of Neutron Production Double Differential Yields in Light Charged Particle Induced Reaction[J]. Nuclear Physics Review, 2020, 37(3):617–620. doi: 10.11804/NuclPhysRev.37.2019CNPC48

您可能感兴趣的其他文章

Articles you may be interested in

利用GEANT4和TALYS研究中子与铁作用的次级中子双微分截面

Calculation of Secondary Neutron Double Differential Cross Sections for Neutron Induced Reactions on Fe with GEANT4 and TALYS 原子核物理评论. 2020, 37(1): 104-108 https://doi.org/10.11804/NuclPhysRev.37.2019061

弱束缚原子核引起的熔合反应机制研究

Study of Fusion Reaction Mechanism Induced by Weakly Bound Nuclei 原子核物理评论. 2020, 37(2): 119-135 https://doi.org/10.11804/NuclPhysRev.37.2019060

GEANT4和FLUKA计算256 MeV质子诱发散裂中子能谱

Calculation of Spallation Neutron Spectra Induced by 256 MeV Protons with GEANT4 and FLUKA 原子核物理评论. 2019, 36(1): 118-123 https://doi.org/10.11804/NuclPhysRev.36.01.118

400~1500 MeV质子轰击铅靶和钨靶的出射中子能谱的FLUKA和Geant4模拟研究

FLUKA and Geant4 Simulation of Spallation Neutrons from Lead and Tungsten Targets Bombarded with 400~1500 MeV Protons 原子核物理评论. 2018, 35(1): 100-104 https://doi.org/10.11804/NuclPhysRev.35.01.100

基于¹⁰B₄C转换体的多层多丝正比室中子探测器模拟

Simulation of a Novel Neutron Detector Based on Multi-layer MWPC with ¹⁰B₄C Convertor

原子核物理评论. 2019, 36(1): 71-77 https://doi.org/10.11804/NuclPhysRev.36.01.071

碳离子在不同材料叶片的多叶光栅上产生的次级粒子研究

Study on the Secondary Particles Produced in Different Material Leaves of Multi-leaf Collimator under Carbon Ion Irradiation 原子核物理评论. 2020, 37(2): 217-224 https://doi.org/10.11804/NuclPhysRev.37.2019050

文章编号: 1007-4627(2020)03-0617-04

利用GEANT4研究轻带电粒子诱发反应出射中子双微分产额

张鑫^{1,2},陈志强^{1,†},刘丙岩^{1,2},韩瑞¹,田国玉¹,石福栋¹,孙慧^{1,2}

(1. 中国科学院近代物理研究所,兰州 730000;2. 中国科学院大学核科学与技术学院,北京 100049)

摘要: 轻带电粒子诱发反应产生次级中子的研究对于加速器屏蔽设计和优化具有重要意义。利用 Geant4 程序结合 INCL、BIC、BERT 物理模型分别计算了 33 MeV 的 d核、65 MeV 的 ³He 核和 ⁴He 核轰击厚的碳、铜和铅靶在0°, 15°, 45°, 75°和135°等方向出射中子的双微分产额,并与实验数据进行了比较。研究表明,对于 33 MeV 的 d核诱发的核反应,INCL 模型的计算结果基本上再现了碳靶和铜靶的实验数据,但高估了铅靶直接过程产生的中子。BIC 模型和 BERT 模型的计算结果没有重现弹核削裂过程对应的宽峰。对于 65 MeV 的 ³He 核诱发的核反应,三个模型的计算结果均未能重现前向角弹核削裂过程产生的中子,但在 15°, 45°, 75°和135°上三个模型的计算结果与实验数据符合较好。对于 65 MeV 的 ⁴He 核诱发的核反应,INCL 模型的计算结果与碳靶和铜靶的实验数据符合较好,但低估了铅靶的中子产额。BIC 模型和 BERT 模型的计算结果低估了碳靶的实验数据,且在大角度上略微高估了铅靶的实验数据。 关键词:轻带电粒子;次级中子产额;Geant4

中图分类号: O571.42⁺² 文献标志码: A

1 引言

强流超导直线加速器^[1]是一种先进的加速器装置, 广泛应用于材料辐照损伤研究、重离子治疗、强流中子 源、医用同位素生产等领域。CiADS(China initiative Accelerator Driven System) 和 HIAF(High Intensity heavy-ion Accelerator Facility) 等装置已经开始建设^[2], 强流超导直线加速器是其中重要的组成部分。在强流直 线加速器的辐射屏蔽设计和优化中,轻带电粒子与加速 器材料相互作用产生的次级中子是需要考虑的因素之一。 目前,轻带电粒子诱发核反应产生次级中子的实验数据 相对缺乏,而完全通过实验测量相关核数据需要大量费 时费力的工作,因此需要可靠的物理模型以及相应的模 拟软件来进行计算。目前应用较为广泛的模拟程序有 Geant4^[3-4]、MCNP5^[5]、FLUKA^[6]和 PHITS^[7-8]等。 其中Geant4作为开源软件,功能强大且灵活,在辐射 防护领域得到了越来越多的应用。已有工作验证了 Geant4使用相关物理模型计算中高能轻带电粒子诱发 反应产生次级中子的双微分截面的可靠性^[9-10]。这些 工作主要检验了Geant4模拟0.4~1.6GeV质子诱发反应 的出射中子截面,对于低能轻带电粒子诱发反应的模拟 研究还非常少。且在较低能区,轻带电粒子与靶原子核 **DOI:** 10.11804/NuclPhysRev.37.2019CNPC48

之间的相互作用更为复杂。因此需要对 Geant4 模拟低能轻带电粒子诱发核反应产生的次级中子进行检验。

本文利用 Geant4 程序结合不同的物理模型,计算 了轻带电粒子轰击碳、铜、铅等厚靶不同角度出射中子 的双微分产额,并与实验数据进行了比较,实验数据来 自文献[11]。

2 蒙特卡罗模拟程序

Geant4是由欧洲核子中心主导开发的基于C++语 言编写的软件包,使用蒙特卡罗算法模拟粒子与物质的 相互作用。由于其强大的功能和开源特性,应用领域从 最初的高能物理不断延伸至核工程、空间物理、核医学、 加速器物理等领域。Geant4程序包含了多种用于模拟 粒子相互作用的强子物理模型,它们封装在物理列表中。 使用 Geant4进行模拟时,需要选择物理列表,或者根 据需求将不同的物理过程组合起来使用。本文使用了 INCL(IntraNuclear Cascade Liege)模型^[12]、Bertini模 型^[13]和BIC(Binary Intranuclear Cascade)^[14]模型,分别 通 过 QGSP_INCLXX_HP、 QGSP_BERT_HP和 QGSP_BIC_HP物理列表实现。其中 QGSP(Quark Gluon String model)代表 Geant4程序的夸克胶子基础

收稿日期: 2020-01-14; 修改日期: 2020-06-01

基金项目:国家自然科学基金资助项目 (11875298);国家自然科学基金委员会-中国科学院大科学装置科学研究联合基金 (U1832205)

作者简介: 张鑫 (1994-),男,陕西商南人,博士研究生,从事核数据实验测量与模拟研究, E-mail: zhangx@impcas.ac.cn

[†]通信作者:陈志强, E-mail: zqchen@impcas.ac.cn。

物理模型; HP(High Precision neutron model)代表当 入射粒子能量低于20 MeV时,将调用高精度输运模型 及相关的评价数据库模拟中子输运过程。INCL模型需 要耦合退激模型使用,本研究中选用的是通用退激模 型(GEM)。Geant4模拟中使用的靶模型参数与实验一 致。从靶中飞出的次级中子被不同角度的虚拟探测器记 录,相应的双微分产额由以下公式给出:

$$\frac{\mathrm{d}^2 Y}{\mathrm{d}E\mathrm{d}\Omega} = \frac{N_{\mathrm{n}}}{N_{\mathrm{p}}\cdot\Delta E\cdot\Delta\Omega},\tag{1}$$

其中: $\frac{d^2 Y}{dEd\Omega}$ 是双微分产额 (sr⁻¹·MeV⁻¹); N_n 表示某 一角度间隔 $\Delta\Omega$ (sr) 内出射的处于能量间隔 ΔE (MeV) 的中子数; N_p 是入射粒子数。

3 计算结果

3.1 d 束结果对比

图1为33MeV的d核轰击厚的C、Cu、Pb靶的出 射中子角分布。d核与靶核的相互作用主要有三个过程: d核的削裂过程,弹核与靶核的直接相互作用过程,以 及复合核蒸发过程。d核的削裂过程以及直接相互作用 产生的次级中子一般集中在前角区发射,而蒸发过程产 生的次级中子在整个空间内均匀发射,与出射角度无关。 从图1中可以看出,在0°和15°范围内,随角度增大次 级中子产额下降明显,表明该角度范围内削裂过程及直 接相互作用占主导地位。在45°及以上的大角度区域, 随角度增大次级中子产额下降趋于平缓,表明该部分中 子主要来自蒸发过程的贡献。

图 2 展示了利用 Geant4 模拟程序计算 33 MeV 的 d 核轰击厚的C、Cu、Pb 靶在0°, 15°, 45°, 75°, 135°

出射方向的中子双微分产额,并将计算结果与实验数据 进行了对比。从图中可以看出,在0°和15°附近,由于 d核削裂过程中子能谱出现了一个宽峰,峰值能量大约 为d束能量的一半。对于较轻的靶核,中子能谱变得更 硬,这可以通过简单的两体运动能量传递公式来解释:

$$E_{\rm t} = \frac{4M_{\rm p}M_{\rm t}E_0}{(M_{\rm p}+M_t)^2},$$
(2)

其中: *M*_p和*M*_t分别表示弹核和靶核的原子核质量; *E*₀ 是弹核的初始动能; *E*_t是碰撞发生后靶核的动能。从公 式中可以看出,对于较轻的靶核,碰撞转移的能量更大, 单个核子可以吸收更多的能量。并且相对于重靶,较轻 的靶核对应的核子数较少,蒸发过程所占比例也更小。 INCL 模型的计算结果基本上重现了碳靶和铜靶的实验 数据,但高估了铅靶中直接过程产生的中子。BIC 模型和 BERT 模型的计算结果没有重现削裂过程导致的宽峰。

图 1 (在线彩图) 33 MeV 的 d 核轰击厚 C、Cu、Pb 靶 的中子产额角分布

图 2 (在线彩图) 33 MeV 的 d 核轰击厚 C、Cu、Pb 靶不同出射角度次级中子双微分产额

第3期

3.2 ³He 束结果对比

利用 Geant4 模拟程序计算了 65 MeV 的³He 核轰击 厚的 C、Cu、Pb 靶在 0°, 15°, 45°, 75°, 135° 出射 方向的中子双微分产额,并与实验数据进行了比较,如 图 3 所示。从图中可以看出中子能谱的形状与d 核诱发 反应产生的中子能谱形状类似。在0°附近,可以看到 ³He核削裂过程导致的宽峰,峰值能量大约为³He束流 能量的三分之一。INCL模型、BIC模型和BERT模型 均未能重现该宽峰。三个模型在其他角度上的计算结果 与实验数据符合较好。

3.3 ⁴He 束结果对比

利用 Geant4 模拟程序计算了 65 MeV 的⁴He 核轰击 厚的 C、Cu、Pb 靶在 0°, 15°, 45°, 75°, 135° 出射 方向的中子双微分产额,并与实验数据进行了比较,如 图 4 所示。从图中可以看出,对于碳靶, INCL 模型的 计算结果与实验数据符合较好,BIC模型和BERT模型的计算结果低估了实验数据。对于铜靶,三种模型的计算结果相近,都与实验数据符合较好。对于铅靶,INCL模型的计算结果低估了实验数据,BIC模型和BERT模型的大角度计算结果略高于实验数据。

4 结论

本文使用 Geant4 程序结合 INCL、BIC、Bert 物理 模型分别计算了 33 MeV 的 d核、65 MeV 的 ³He核和 65 MeV 的 ⁴He核轰击厚的碳、铜和铅靶在 0°, 15°, 45°,75°,135°等出射方向的中子双微分产额,并与 实验数据进行了比较。研究表明,对于低能d核诱发的 核反应,INCL模型的计算结果基本上再现了碳靶和铜 靶的实验数据,但高估了铅靶直接过程对应的中子。 BIC模型和 BERT模型的计算结果没有重现弹核削裂 过程对应的宽峰。对于低能³He诱发的核反应,三个模型的计算结果均未能重现前向角弹核削裂过程产生的中子,其他角度上三个模型的计算结果相近且与实验数据符合较好。对于低能⁴He诱发的核反应,INCL模型的计算结果与碳靶和铜靶的实验数据符合更好,但低估了铅靶的中子产额。BIC模型和 BERT模型的计算结果低估了碳靶的实验数据,略微高估了铅靶大角度上的实验数据。整体来看,低能区轻带电粒子诱发的核反应非常复杂,为了更加精确计算轻带电粒子诱发反应的次级中子产额还需要对物理模型做进一步研究。

参考文献:

- BOLLINGER L. Annual Review of Nuclear and Particle Science, 1986, 36(1): 475.
- [2] XIAO Guoqing, XU Hushan, WANG Sicheng, et al. Nuclear Physics Review, 2017, 34(3): 275. (in Chinese) (肖国青, 徐瑚珊, 王思成. 原子核物理评论, 2017, 34(3): 275.)
- [3] AGOSTINELLI S, ALLISON J, AMAKO K, et al. Nucl Instr and Meth A, 2003, 506(3): 250.
- [4] ALLISON J, AMAKO K, APOSTOLAKIS J, et al. Nucl Instr and Meth A, 2016, 835: 186.

- [5] BRIESMEISTER J F. MCNP-A General Monte Carlo N-Particle Transport Code, Version 4A[R]. Los Alamos National Laboratory, LA-12625, 1993.
- [6] GIUSEPPE B, TILL B, FRANCESCO C, et al. Annals of Nuclear Energy, 2015, 82: 10.
- [7] TATSUHIKO S, YOSUKE I, SHINTARO H, et al. J Nucl Sci Technol, 2018, 55(6): 684.
- [8] YOSUKE I, TATSUHIKO S, SHINTARO H, et al. J Nucl Sci Technol, 2017, 54(5): 617.
- [9] ZHANG Suyalatu, LUO Fei, CHEN Zhiqiang, et al. Nuclear Physics Review, 2016, 33(3): 370. (in Chinese) (张苏雅拉吐, 罗飞, 陈志强, 等. 原子核物理评论, 2016, 33(3): 370.)
- [10] SONG Lin, CHEN Zhiqiang, HAN Rui, et al. Nuclear Physics Review, 2018, 35(1): 100. (in Chinese)
 (宋林,陈志强,韩瑞,等. 原子核物理评论, 2018, 35(1): 100.)
- [11] SHIN K, HIBI K, FUJ II M, et al. Phys Rev C, 1984, 29(4): 1307.
- [12] DAVIDE M, ALAIN B, JOSEPH C, et al. Phys Rev C, 2014, 90(5): 054.
- [13] FOLGER G, IVANCHENKO V N, WELLISCH J P, et al. The European Physical Journal A - Hadrons and Nuclei, 2004, 21(3): 407.
- [14] BERTINI H W, GUTHRIE M P. Nucl Phys A, 1971, 169(3):670.

Geant4 Simulations of Neutron Production Double Differential Yields in Light Charged Particle Induced Reaction

ZHANG Xin^{1,2}, CHEN Zhiqiang^{1,†}, LIU Bingyan^{1,2}, HAN Rui¹, TIAN Guoyu¹, SHI Fudong¹, SUN Hui^{1,2}

(1. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;

2. School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: The study of secondary neutrons produced by light charged particles induced reaction is of great significance to the design and optimization of accelerator shielding. The neutron double differential yields from 33 MeV-d, 65 MeV-³He and 65 MeV-⁴He bombarding thick carbon, copper and lead targets in the directions of 0° , 15° , 45° , 75° , 135° , are calculated by using Geant4 code with INCL, BIC and BERT physics models, and compared with the experimental data. The results show that, for the 33 MeV d-induced reaction, the results from the INCL model basically reproduced the experimental data of carbon and copper targets, but overestimated the neutron yields corresponding to the direct process in lead target. The results from the BIC model and Bert models failed to reproduce the broad peak due to the stripping of the projectiles. For the 65 MeV ³He-induced reaction, the results from the three models could not reproduce the neutrons in the stripping process in the forward angles. The calculated ones with these three models agreed well with the experimental results in other angles. For the 65 MeV ⁴He-induced reactions, the calculation results of the INCL model are in good agreement with the experimental ones for carbon and copper targets, but underestimated the neutrons for lead target. The calculation results of the BIC model and BERT model underestimated the experimental data for carbon target and slightly overestimated the experimental ones for lead target in large angles.

Key words: light charged particles; secondary neutron yields; Geant4

Received date: 14 Jan. 2020; Revised date: 01 Jun. 2020

Foundation item: National Natural Science Foundation of China(11875298); Joint Large-Scale Scientific Facility Funds of NSFC and CAS(U1832205)

[†] Corresponding author: CHEN Zhiqiang, E-mail: zqchen@impcas.ac.cn.