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Abstract：The ratio of shear viscosity (η) to entropy density (s) of nuclear fireball created in the

central region of intermediate-energy heavy-ion collisions has been investigated within two transport

models, namely the Boltzmann-Uehling-Uhlenbeck (BUU) model and the isospin-dependent quantum

molecular dynamics (IQMD) model. Different methods are used to calculate η and s. With the collision

energy increasing, the η/s displays a saturation value or a local minimum value at a certain beam energy.

We argue that the saturation or minimum point corresponds to an occurrence of nuclear liquid gas phase

transition.
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1 Introduction

In the past decades, extensive experimental and

theoretical efforts have been devoted to search for

the nuclear liquid-gas phase transition (LGPT) in

intermediate energy heavy-ion collisions (HIC)
[1–12]

.

Many probes have been suggested for the onset

of nuclear LGPT， for instance, the fragment size

distribution
[13]

and its rank distribution
[12]

, the

largest fluctuation of the heaviest fragment
[14]

,

caloric curve
[4, 6]

, bimodality
[15]

etc. In addition,

it has been observed that the ratio of shear viscos-

ity to entropy density (η/s) reaches its local mini-

mum at the transition temperature for a wide class

of systems. For instance, empirical observation of

the temperature or incident energy dependence of

the shear viscosity to entropy density ratio for H2O,

He and Ne2 exhibits a minimum in the vicinity of

the critical point for phase transition
[16]

. And more

recently, a lower bound of η/s > 1/4π obtained by

Kovtun-Son-Starinets (KSS) for infinitely coupled

super-symmetric Yang-Mills gauge theory based on

the AdS/CFT duality conjecture, is speculated to be

valid universally[17−18].

In ultra-relativistic HIC
[19–23]

, people have used

the ratio of shear viscosity to entropy density to

study the quark-gluon plasma phase and the ex-

tracted value of η/s seems very close to the KSS

bound (1/4π). In intermediate energy heavy-ion col-

lision, several pieces of work have been done on dif-

ferent models
[24–31]

. In our previous papers[27−28],

simulations on central Au+Au collisions have been

performed for investigating the shear viscosity over

entropy density ratio by using two microscopic

transport models known as the isospin-dependent

quantum molecular dynamics (IQMD) model
[32–37]

and the Boltzmann-Uehling-Uhlenbeck (BUU)
[38–41]

model. In this paper we would like to make a

brief summary on the above work. The focus

is on the relationship between η/s and the nu-

clear liquid gas phase transition. Different kinds of
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method are used to extract the related thermal and

transport properties, including the generalized hot

Thomas Fermi formalism (GHTFF)
[42–44]

, the mo-

mentum fluctuation
[45]

, Green-Kubo formula, trans-

port formula
[46]

and so on. At last the multiplic-

ity of intermediate mass fragment (IMFs) is also

investigated as a signal of liquid gas phase phase

transition
[47–50]

to verify the calculation results.

The paper is organized as follows. Section 2 pro-

vides a brief introduction for the IQMD and BUU

models. Section 3 introduces the different calcula-

tion methods used to extract the thermal and trans-

port properties. In Section 4 we present the calcula-

tion results and discussions.

2 IQMD and BUU models

2.1 BUU

BUU model is a one-body microscopic transport

model based upon the Boltzmann equation[38−39].

The BUU equation reads
[40]

∂f
∂ t

+v ·∇rf−∇rU ·∇pf =
4

(2π)3

∫
d3p2d

3p3dΩ

dσNN

dΩ
V12×

[
f3f4(1−f)(1−f2)−ff2(1−f3)×

(1−f4)
]
δ3(p+p2−p3−p4) . (1)

It is solved with the method of Bertsch and Das

Gupta
[41]

. In Eq. (1), dσNN/dΩ and V12 are in-

medium nucleon-nucleon cross section and relative

velocity for the colliding nucleons, respectively, and

U is the mean field potential including the isospin-

dependent term:

U(ρ,τz)= a(
ρ

ρ0
)+b(

ρ

ρ0
)σ+Csym

(ρn−ρp)

ρ0
τz , (2)

where ρ0 is the normal nuclear matter density; ρ,

ρn, and ρp are the nucleon, neutron and proton den-

sities, respectively; τz equals 1 or −1 for neutrons

and protons, respectively; The coefficients a, b and

σ are parameters for nuclear equation of state. Two

sets of mean field parameters are used in this work,

namely the soft EOS with the compressibility K of

200 MeV (a = −356 MeV, b = 303 MeV, σ = 7/6 ),

and the hard EOS with K of 380 MeV (a = −124

MeV, b= 70.5 MeV, σ = 2 ). Csym is the symmetry

energy strength due to the density difference of neu-

trons and protons in nuclear medium, here Csym =32

MeV is used.

2.2 IQMD

On the other hand, the QMD approach is a

many-body theory that describes heavy-ion colli-

sions from intermediate to relativistic energy
[32]

.

The IQMDmodel[33−34] is based on the QMDmodel,

including the isospin degrees and Pauli blocking etc.

Each nucleon in the colliding system is described as

a Gaussian wave packet

ϕi(r, t)=
1

(2πL)3/4
×

exp

[
− (r−ri(t))

2

4L

]
exp

[
− ir ·pi(t)

~

]
. (3)

Here ri(t) and pi(t) are the mean position and mean

momentum, respectively, and the Gaussian width

has the fixed value L=2.16 fm2 for Au+Au system.

The centers of these Gaussian wave packets propa-

gate in coordinate (R) and momentum (P ) space

according to the classical equations of motion:

pi =− ∂⟨H⟩
∂ri

; ri =
∂⟨H⟩
∂pi

, (4)

where ⟨H⟩ is the Hamiltonian of the system.

The Wigner distribution function for a single

nucleon density in phase space is given by

fi(r,p, t)=
1

π3~3
e−(r−ri(t))

2 1
2L e−(p−pi(t))

2 2L
~2 . (5)

The mean field in IQMD model is:

U(ρ)=USky+UCoul+UYuk+Usym, (6)

where USky, UCoul, UYuk, and Usym represents

the Skyrme potential, the Coulomb potential, the

Yukawa potential and the symmetry potential inter-

action, respectively
[32]

. The Skyrme potential is:

USky =α(ρ/ρ0)+β(ρ/ρ0)
γ , (7)

where ρ0 = 0.16 fm−3 and ρ is the nuclear density. In

the present work, the parameter set with α=−356

MeV, β = 303 MeV, and γ = 7/6, is used, which

corresponds to a soft equation of state. UYuk is a

long-range interaction (surface) potential, and takes

the following form
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UYuk =
Vy

2

∑
i̸=j

exp(Lm2)

rij
·

[
exp(mrij)erfc

(√
Lm− rij√

4L

)
−

exp(mrij)erfc

(√
Lm+

rij√
4L

)]
(8)

with Vy =0.0074 GeV and m=1.25 fm−1. rij is the

relative distance between two nucleons. The symme-

try potential is Usym =32(ρn−ρp/ρ0)τz MeV, where

ρn, ρp, and ρ0 are the neutron, proton and nucleon

densities, respectively; τz equals 1 or −1 for neutrons

and protons, respectively.

From Eq. (5) one obtains the matter density of

coordinate space by the sum over all the nucleons,

i.e.

ρ(r, t)=

AT+AP∑
i=1

ρi(r, t)

=

AT+AP∑
i=1

1

(2πL)3/2
e−

(r−ri(t))
2

2L . (9)

The kinetic energy density in coordinate space

could also be calculated from Eq. (9)

ρK(r, t)=

AT+AP∑
i=1

Pi(t)
2

2m
ρi(r, t) . (10)

The time evolution of the mean nuclear density and

kinetic energy density in a given central volume

(with R=3.5 fm) is shown in Fig. 1. Both the matter

density and kinetic energy density are reaching their

maxima around 20 fm/c. And the hot and dense

nuclear matter survives for a longer time when the

beam energy is lower. This can be easily understood

as the nuclear matter experiences compressed and

expanded processes more quickly at higher beam en-

ergy.

Fig. 1 (color online)The time evolution of mean nuclear matter density (a) and kinetic energy density (b) in a

central region defined as a sphere with radius R = 3.5 fm for the head-on Au+Au collisions in the QMD

model. Different symbols represent different beam energies which are illustrated in the inset.

3 Calculation formula

3.1 The Generalized Hot Thomas-Fermi

Formalism

Thermodynamical properties of hot nuclear mat-

ter formed in heavy ion collisions, e.g. tempera-

ture and entropy density, can be extracted by us-

ing the approach developed by Faessler and collabo-

rators[42−44, 51−52]. In this approach one starts from

a microscopic picture of two interpenetrating pieces

of nuclear matter and deduces thermal quantities

from the matter density and kinetic energy density

obtained during the collisions. In this paper, the

extraction of thermal properties of the hot nuclear

matter is done in two steps. First, based on the

IQMD simulation, one can calculate the nuclear mat-

ter density and kinetic energy density at each point

in coordinate space at every time step. Second, by
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employing the hot Thomas-Fermi formalism, one can

obtain the corresponding thermal properties for ev-

ery set of nuclear matter density and nuclear kinetic

energy density[42−43]. In GHTFF, the momentum

distribution in cylindrical coordinates kr, kz can be

written as

n(K)=


n1(K)=

{
1+exp

[
~2(k2

r +k2
z)

2mT −µ′
1

]}−1

, kz <k0

n2(K)=

{
1+exp

[
~2

[
k2
r +(kz−kR)

2
]

2mT −µ′
2

]}−1

, kz >k0

with µ′
i =µi/T is the reduced chemical potential, k0 = [k2

R−2mT (µ′
1−µ′

2)]/2kR, kR is the relative momentum

between the projectile (index 1) and target (index 2). The local nuclear matter density ρi is expressed as

ρi =
1

2
ρ0(µ

′
i)+

1

2π2

(
2mT

~2

)3/2 [
f(µ′

i,K0i)+J1/2(µ
′
i,K

2
0i)

]
, (11)

where K01 = ~K0/
√
2mT,K02 = KR −K01 with Kr = ~kR/

√
2mT , and Jn(µ

′) = Jn(µ
′,∞) is the Fermi

integrals, i.e.

Jn(µ
′,z)=

∫z
0

xndx

1+exp(x−µ′)
, f(µ′

i,K0i)=K0i ln
[
1+exp(µ′

i−K2
0i)

]
.

The local kinetic energy density ϵ= ~2τi/(2m), where τi reads

τi =
1

2
τ0

(
µ′
i

)
+

1

2π2
(
2mT

~2
)5/2

[
1

3
K2

0if(µ
′
i,K0i)+

1

3
J1/2(µ

′
i,K

2
0i)+

∫K0i

0
J1(µ

′
i−x2)dx

]
+∆τi(µ

′
i) . (12)

And the entropy density si is written as

si =
1

2
s0(µ

′
i)+

1

2π2

(
2mT

~2

)3/2 [( 1

3
K2

0i−µ′
i

)
f
(
µ′
i,K0i

)
+

1

3
J1/2(µ

′
i,K

2
0i)−µ′

iJ1/2(µ
′
i,K

2
0i)+2

∫K0i

0
J1(µ

′
i−x2)dx

]
. (13)

Here i=1,2 represents the projectile and target, and ∆τ1(µ
′
1)= 0,

∆τ2(µ
′
2)=

1

2π2

(
2mT

~2

)5/2

KR

[
J1(µ

′
2)−J1(µ

′
2,K

2
02)−K02f(µ

′
2,K02)

]
+k2

Rρ2(µ
′
2) .

From the Eqs. (11∼13), one can obtain thermal prop-

erties by inversion in principle. But such an inversion

procedure is practically not feasible due to the com-

plexity of the equations. Therefore, a more practical

way is chosen to obtain the thermal properties. First,

we generate all reasonable combinations T , KR and

µ′
i, which ranging from 0∼ 100 MeV, 0∼ 5 fm−1 and

0∼ 2, respectively. Then the corresponding ρi, τi,si

can be obtained. Second, from the extracted ρi, τi in

the central region at each time step during the evolu-

tion of collision, T , KR and µ′
i are obtained from the

calculations in the first step. Third, the entropy den-

sity is calculated according to Eq. (13). One should

pay attention that all the values displayed in the fol-

lowing pictures are the average one in the central

region.

3.2 Other formula

Temperature of the system can be derived from

the momentum fluctuations of particles in the cen-

ter of mass frame of the fragmenting source
[45]

. The

variance σ2 is obtained from the Qz distribution

through

σ2 = ⟨Qz
2⟩−⟨Qz⟩2 , (14)

where Qz is the quadruple moment which is defined
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by Qz = 2p2z − p2x − p2y, and px,py and pz are three

components of momentum vector extracted from the

phase space of BUU model. If the mean value is

equal to zero, the second term vanishes. Q2
z is de-

scribed by

⟨Qz
2⟩=

∫
d3p(2p2z−p2x−p2y)

2f(p) . (15)

Assuming a Maxwellian distribution for the momen-

tum distribution, i.e.

f(p)=
1

(2πmT )3/2
e−

px
2+py

2+pz
2

2mT , (16)

we can obtain

⟨Q2
z⟩=4m2A2T 2 (17)

after Gaussian integral, where m is the mass of a

nucleon and A is the mass number of the fragment.

For a nucleonic system, we have A=1 and can calcu-

late the evolution of temperature using this equation.

Fig. 2(b) shows the temperature’s evolution after 25

fm/c, it is seen that temperature reaches a maximum

around 50 fm/c when the system is in the most com-

pressible stage and then it starts to cool down when

the system expands, later on the system tends ther-

modynamic equilibrium. For an equilibrated system,

Fig. 2 Rp (a), temperature (b) and entropy density

per nucleon (c) as a function of time (after 24

fm/c) for the head-on Au+Au collision within 5

fm-radius sphere at 50 MeV/u.

the kinetic energy distributions approach the Boltz-

mann distribution as time increases. After the ex-

pansion process, the system will approach an equili-

brate state, then we can proceed to investigate the

viscosity coefficient and entropy density in system.

Shear viscosity determines the strength of the

energy momentum fluctuation of dissipative fluxes

about the equilibrium state, which can be calculated

by using Green-Kubo relation. The Green-Kubo for-

mula for shear viscosity is defined by
[53]

η=
1

T

∫
d3r

∫∞

0
dt⟨πij(0,0)πij(r, t)⟩ , (18)

where T is the temperature of the system, “0” rep-

resents the starting time when the system tends

to equilibrium and t is the post-equilibration time,

⟨πij(0,0)πij(r, t)⟩ is the shear component of the en-

ergy momentum tensor. In order to compute an in-

tegral, we assume that nucleons are uniformly dis-

tributed in the space. Meanwhile, the isolated spher-

ical volume with the radius of 5 fm is fixed, so the

viscosity becomes

η=
V

T
⟨πij(0)

2⟩τπ , (19)

where τπ is calculated by

⟨πij(0)πij(t)⟩∝ exp(− 1

τπ
) . (20)

In this work, the post-equilibration stage is de-

fined as the nuclear matter within the given cen-

tral region has reached an equilibrium which can be

judged by the stopping parameter
[54]

. The stopping

Rp is defined as

Rp =
2
∑

Rt

π
∑

Rz
, (21)

where Rt =
√
p2x+p2y and Rz =

√
p2z is the transverse

and parallel momentum, respectively. Nevertheless,

the anisotropy ratio can also be used to determine

the equilibrium of the system. Anisotropy ratio is

defined as

Rp =
2

π

R∥

R⊥
, (22)

where R∥ = ⟨
√

p2x+p2y⟩ and R⊥ = ⟨
√
p2z⟩ are cal-

culated by the momentum of nucleons in the given

volume. Fig. 2(a) shows the anisotropy ratio Rp as
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a function of time for the head-on Au+Au collisions

with a 5 fm-radius sphere at 50 MeV/u.

Except temperature, other thermodynamic vari-

ables can be calculated during heavy-ion collisions.

Energy density inside a volume with the 5 fm-radius

can be defined as

ε=
1

V

∑
ri<r0

Ei, (23)

where Ei is
√

p2i +m2
i , ri is the position of the i-th

nucleon in the center of mass and r0 is the selected

radius (here we set r0 = 5 fm) and pressure can be

defined as

P =
1

3V

∑
ri<r0

p2i
Ei

. (24)

After we get the energy density, pressure and tem-

perature, entropy density can be calculated by the

Gibbs formula

s=
ε+P −µnρ

T
, (25)

where µn is the nucleon chemical potential and ρ is

nucleon density of system within the given sphere. In

principal, once we have the temperature T and f(p),

we can fit to a Fermi-Dirac function to extract the

chemical potential. However, we can assume, for sim-

plicity, zero nucleon chemical potential, or µn can be

taken around 20 MeV in the present calculation
[55]

.

Fig. 2(c) shows entropy density per nucleon as a func-

tion of time for the head-on Au+Au collisions with

a 5 fm-radius sphere at 50 MeV/u.

Different kinds of combination are used to study

the ratio of shear viscosity to entropy density, e.g.,

the momentum fluctuation method and the Gibbs

formula and the Green-Kubo formula are employed

in the BUU model (Sec. 4.1), and the hot Thomas

Fermi formulism and the Green-Kubo formula for

the IQMD model (Sec. 4.2). In the following sec-

tions we will discuss all these results one by one.

In Ref. [46, 56] the nuclear shear viscosity for

normal N-N cross section, has been derived from the

microscopic BUU equation and can be parameterized

as a function of density ρ and temperature T :

η

(
ρ

ρ0
,T

)
=

1700

T 2

(
ρ

ρ0

)2

+
22

1+T 210−3

(
ρ

ρ0

)0.7

+

5.8
√
T

1+160T−2
, (26)

where η is in MeV/fm2c, T in MeV, and ρ0 = 0.168

fm−3. Fig. 3 shows η as a function of T and ρ/ρ0.

One can see that η exhibits a very distinct minimum

when nuclear matter density is less than normal nu-

clear density. And as the density increases, the tran-

sition temperature also gets larger, e.g. for normal

density the transition temperature locates around 10

MeV, but for 2.5 times normal density it is almost 50

MeV. This conclusion is coincident with macroscopic

result.

Fig. 3 (color online) Shear viscosity of nuclear matter

as a function of ρ/ρ0 and T with the Eq. (26).

Different symbols represent different ρ/ρ0, which

are illustrated in the upper right corner of the

figure.

4 Results and discussion

4.1 BUU results

In this section, we will show the results based on

the BUU model, which are calculated by using the

momentum fluctuation method and Green-Kubo for-

mula. As already mentioned before, Fig. 2 displays

the time evolution of anisotropy ratio, temperature

and entropy per nucleon for Au+Au systems within

a 5 fm-radius sphere at 50 MeV/u. From panel (a),

it is easy to see that Rp increases from 0.5 to 1.0, this

means that the system is far from equilibrium at very

beginning and slowly approaches equilibrium by the

interactions between the nucleons, finally around 100

fm/c the system gets equilibrated. For temperature,

there is a peak around 50 fm/c, then decreases to a

saturation value. As to the entropy per nucleon, it

also reaches a saturation value. It is interesting to

note that these three values reach their asymptoti-

cal values at the same time, which is understandable
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that there should be no dramatic changes in the ther-

mal properties when a system gets equilibrium.

Fig. 4(a) shows energy density per nucleon ver-

sus temperature for the studied system after 25 fm/c.

Similarly, pressure per nucleon is shown as a function

of temperature in Fig. 4(b). From the figure, we

can see both energy density and pressure increase

with temperature. This can be understood that in a

given volume, the increasing of temperature reflects

stronger thermal motion of nucleons, therefore the

kinetic energy will give more contribution on energy

density and pressure.

Fig. 4 Energy density per nucleon (a) and pressure

per nucleon (b) as a function of temperature for

the head-on Au+Au collision within 5 fm-radius

sphere at 50 MeV/u.

As shown in Fig. 5(a), ⟨πij(0,0)πij(r, t)⟩ is plot-
ted as a function of time for Au+Au at 50 MeV/u.

The correlation function is damped exponentially

with time and can be fitted by the Eq. (20) to extract

the inverse slope which corresponds as the relaxation

time. Fig. 5(b) shows that the relaxation time de-

creases as the increase of incident energy, indicating

that the system can approach to equilibration faster

at higher incident energy. Using the above method,

we present the value of η/s as a function of incident

energy after the studied system has been in equilib-

rium as shown in Fig. 6. The two sets of nuclear

equation of state are used. The η/s value shows a

rapid fall as the increasing of incident energy up to

E< 70 MeV/u and then drops slowly to a value close

0.5 when E> 70 MeV/u. In this calculation, we did

not expect to see a turning point of η/s which is

usually taken as a phase transition or critical point.

Since the BUU equation is a one-body theory, frag-

mentation which originates from the fluctuation and

correlation can not be treated in the present model.

In this case, the phase transition behavior cannot be

predicted in the BUU model.

Fig. 5 (a) ⟨πij(0,0)πij(r, t)⟩ evolves with time for the

head-on Au+Au collision in a given 5 fm-radius

volume at 50 MeV/u; (b) Relaxation time as

a function of incident energy for the head-on

Au+Au collision in a given 5 fm-radius volume.

Fig. 6 (color online) η/s as a function of beam energy

for the head-on Au+Au collision in a spherical

volume with radius of 5 fm. The inset shows the

derivative of η/s versus beam energy.
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4.2 QMD results

Based on a generalized hot Thomas-Fermi for-

malism (GHTFF), the time evolutions of temper-

ature and entropy density are depicted in Fig. 7.

Along the time scale of the collision, one can see

that both values almost evolve isochronously, reach

their maxima at about 20 fm/c. After the compres-

sion stage the nuclear system begins to expand and

some nucleons escape from the central region, and

the central region becomes cooled down. The en-

tropy density decreases more quickly than tempera-

ture, this is due to direct effect of the quick escape

of the nucleons.

Fig. 7 Time evolution of temperature (a) and entropy density (b) in the central region. Different symbols
represents different beam energy as illustrated in the inset.

Furthermore with the help of coalescence mech-

anism, the fragment information can be given in

IQMD. The intermediate mass fragment which is

here defined with charge number greater than 3 and

smaller than 1/3 of the system size is very important

for nuclear multi-fragmentation. These fragments

are larger than typical evaporated light particles and

smaller than the residues and fission products, and

they can be considered as nuclear fog. So the mul-

tiplicity of intermediate mass fragments (MIMFs) is

related to the occurrence of liquid gas phase transi-

tion. Usually the MIMFs increases first as beam en-

ergy increases when the nuclear liquid phase is still

dominant, and reaches a maximum, then decreases

when the nuclear gas phase becomes dominant
[47]

.

Fig. 8 shows the MIMFs which is extracted from the

final stage of the collision as a function of beam en-

ergy for head-on Au+Au collisions. One can see the

turning energy is around 90 MeV/u.

Fig. 8 MIMFs as a function of beam energy for the

head-on Au+Au collisions.

Time evolution of stopping is displayed in Fig. 9.

From the figure, we observe that at the the initial

stage the stopping is very small and its value de-

creases with the energy. Later there is a quick in-

crease of the stopping due to the interplay of two

body collision, mean field and Pauli blocking, and

the collective motion energy turns into thermal en-
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ergy and the potential energy during the compres-

sion stage. It is interesting to see there is a vibra-

tion of Rp, this is caused by the transformation be-

tween the potential energy and kinetic energy. The

stopping approaches a saturate value very close to 1

after oscillation, which means the nucleonic system

in the central volume is very close to equilibrium in

later stage of collisions. Different starting time (“0”)

when Rp tends to 1 has been used in the Eq. (18) for

calculating viscosity.

Fig. 9 Time evolution of stopping in the central

sphere.

Different symbols represent different beam energy

as illustrated in the inset.

As shown in Fig. 10, ⟨πij(0,0)πij(r, t)⟩ is plotted
versus time for Au+Au collision at different incident

energies. The correlation function is damped expo-

nentially with time and can be fitted by the Eq. (20)

to extract the inverse slope which corresponds to the

relaxation time. Fig. 10 shows that the relaxation

time decreases with the incident energy, indicating

that the system approaches to equilibration faster at

Fig. 10 ⟨πij(0,0)πij(r, t)⟩ evolves with the post-

equilibration time for the head-on Au+Au

collision in the central sphere. Different symbols

represent different beam energies and lines are

the fits with Eq. (20).

higher incident energy, which is consistent with the

results from the stopping parameter.

Finally, we come by the shear viscosity and its

ratio to entropy density. Fig. 11(a) shows shear vis-

cosity η as a function of incident energy. It is very

interesting to see that the shear viscosity alone also

exhibits a minimum near 120 MeV/u. Since the tem-

peratures in post-equilibration stage are almost the

same for the collisions at different energies, the val-

ues of shear viscosity are mostly influenced by the

tensor correlation, which reflects the fluctuation of

dissipative fluxes. Fig. 11(b) displays η/s as a func-

tion incident energy for the head-on Au+Au colli-

sions from 70 to 200 MeV/u. The η/s decreases

quickly with the incident energy up to a platform

of the minimum value at around 120 MeV/u and

Fig. 11 Shear viscosity η (a) and the ratio of shear

viscosity to entropy density (b) as a function

of incident energy for the head-on Au+Au

collisions.
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afterwards the curve weakly rise up slowly. The min-

imum value is around 0.6, i.e. about 7 times KSS

bound (1/4π). As we expected, all η/s values from

the present QMD model are lager than the KSS

bound. On the other hand, we noticed that the loca-

tion of energy with the maximum NIMFs and η/s is

not exactly the same, it might be due to our Green-

Kubo calculation focuses on a given central nuclear

region, and the IMFs represent the whole colliding

system.

5 Summary

Thermodynamical and transport properties of

a fireball formed in head-on Au+Au collisions are

investigated in both IQMD and BUU model. The

ratio of shear viscosity to entropy density is ex-

plored by different methods, mainly including the

hot Thomas-Fermi formulism, the momentum fluc-

tuation method, Green-Kubo formula, Danielewicz’s

parameterized function. A minimum is found for the

ratio of shear viscosity to entropy density in IQMD,

and while an asymptotic saturation value was ob-

served in BUU. We argue that a minimum or satura-

tion η/s corresponds to a liquid gas phase transition

of nuclear system in the intermediate energy heavy-

ion collisions.
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中能重离子碰撞中参与者区域的粘滞系数与熵密度之比

马余刚1)，周铖龙，方德清

(中国科学院上海应用物理研究所，上海 201800 )

摘要: 在同位旋依赖的量子分子动力学 (IQMD)和Boltzmann-Uehling-Uhlenbeck(BUU)的框架下研究了重离

子碰撞过程中核物质的剪切粘滞系数与熵密度的比值。用不同的方法提取了剪切粘滞系数 (η)、熵密度 (s)和

其他相关的物理量。随着碰撞能量的增加，粘滞系数和熵密度的比值在BUU模型中逐渐趋于一个饱和值而

在 IQMD模型中出现了一个极小值，认为这个局域的最小值或饱和值对应于中能重离子碰撞中发生的核物质液

气相变现象。
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