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Abstract: The analytical form of the Green’s functions of the inhomogeneous diffusion equation for neutrons
are obtained using the Fourier method. The neutron flux distributions with the external neutron source located
at arbitrary positions are calculated from the Green’s functions. In a subcritical system, the dependences of the
subcritical multiplication factor ks on the source position and the core size with the fixed subcriticality kg are
analyzed based on the series solution. It is found that ks decreases with the core size. Although this variation is

small, the energy gain is sensitive to kg and then the core size, which has to be taken into account in the design

of the source driven subcritical system.
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1 Introduction

In recent years, the wide interest in developing the
new form of Accelerator Driven System (ADS) arises to
meet the urgent demand for nuclear energy and trans-
mutation of long-life radio-toxic by-products. These by-
products are generated from large number of existing
nuclear power plants and raise a serious environmental

problem!!~2!

. Subcritical core is characterized by its in-
trinsic safety and ability of energy ampliﬁcation[3]. Both
features are due to certain degree of subcriticality of the
system, conventionally described by the effective multipli-
cation factor k.. This factor is extracted from the eigen-
value of neutron transport equation, which obviously de-
pends only on the inherent property of the core. However,
when considering the effect of external source neutrons, we
should use a new parameter subcritical multiplication fac-
tor kg to evaluate the efficiency of external source neutrons.
ks 1s defined as the fraction of the fission neutrons in the

subcritical system[4’6]:
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F = J rd3rdE v2e(r,E)py(r,E) , ()
vJOo
S = J rd3rdE s(r, E), 3)
vVJO

where F and S are total number of fission and source
neutrons respectively, V is the the volume of the system,
s(r, E) is the external neutron source density, v is the
average number of fission neutrons per fission reaction,
¢s(r, E) is the neutron flux, and 2¢(r, E) is the macroscop-
ic fission cross-section.

One of main goals of ADS is to amplify the beam en-
ergy for power production. So the energy generated by to-
tal fission reactions in the multiplying medium is expected
to be as high as possible for economic purpose. To evalu-
ate the energy amplification, the energy gain g is defined as
the ratio of the energy produced by the secondary fissions

to the proton energy[7]:

0.2ksNo
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where Ny is the number of primary neutrons produced by
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the interaction of a proton with spallation target, E;, is the
proton energy. When kg approaches unity, the energy gain
will be infinitely large.

To obtain a high g, the core should be very close to
the critical point. However, a subcritical reactor operated
far from the critical point is considered to be safer than the
one which is nearly critical. We can see from Eq. (4) that
the energy gain is directly related to the subcritical multi-
plication factor kg, while the safety is determined by sub-
criticality k.. The two parameters are different unless the
system is exactly critical. In this paper, we will build a sim-
ple subcritical reactor model with cylindrical and spherical
symmetry. The model is based on diffusion approxima-
tion and captures main features of subcritical reactor. The
neutron flux distribution can be obtained using the Green’s
function technique. An analytical expression for the mul-
tiplication factor ks can be obtained as a function of the
external neutron source position and the radius of the sub-
critical reactor. We will investigate the difference between
ks and ke which may provide some guidance for the de-
sign of ADS.

2 Green’s function for neutron diffu-
sion equation

We consider a bare subcritical reactor model with on-
ly one energy group. The neutron flux is a function of r
only. With general notations, the static neutron diffusion

equation with an external source can be written as:

DV?¢(r) + (vZt = Z)ds(r) + 5(r) =0, (5)
¢s(r = boundary surface) =0 . (6)

Eq. (6) is the usual boundary condition in diffusion theory.
Here 2, is the macroscopic absorption cross section, D is
the diffusion constant, and the subscript ‘s’ represents that
the system is subcritical. With the material buckling B,

and the source term ¢g(r),

B - (vzfl; Z) o
g="1 ®)

Eq. (5) can be written in a 51mple form,
V2o(r) + B (r) +q(r) =0 . Q)

Eq. (9) is the main equation we are going to solve.

We will use the Green’s function method to solve this

9-101 where the static Green’s function is defined

equation!
via
V2G(r,r)+ BAG(r.r)+6(r-r')=0, (10)

and the neutron flux can then be obtained by
¢s(r) = J & Gr, r)qr) . (11)
v

2.1 Cylinder case

In this subsection, we consider an infinite cylinder
with radius R. In cylindrical coordinates, Eq. (10) is writ-

ten in the following form,

# 1o 1 &
—+——+——+B,|GP,P)Y+5(PP)=
o2 T oar 2o m (BP)+0BF) =
(12)
with the boundary condition
G(P,P)|=r=0. (13)

Here we used the notation P = (r,0) and P’ = (+,9’).
The fundamental solution u(rpp/) of the inhomoge-

neous diffusion equation satisfies

2 10 2
r 2“("PP’)+_5M(”PP)+ 5 agzu(rPP)
+Bmu(rpp/) =-6(P-P), (14)

where rpp is the distance between the two points P and P’

in the cylinder. The solution reads!!!!

1
u(rppr) = —ZYO(erPP') , 15)

where Y denotes the Bessel function of the second kind.
Then the Green’s function can be decomposed into two
parts

G(P,P") = u(rpp) +g(P,P"), (16)

where g(P, P’) is the solution of the homogeneous equation

& 14 1 9 ,
Z3 8PP+ — = g(PP)+ — —g(PF)
+B2g(P.P)=0, (17)
satisfying the boundary condition
§(P,P") ly=r= —u(rpp’) lr=r - (18)

The homogeneous solution g(P, P’") can be expanded in the

series

g(P.P)= ZJ,,(er)[An cos(nd) + Bysin(nd)|,  (19)
n=0
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where J,, is the Bessel function of the first kind, A, and
B,, are coefficients to be determined by the boundary con-
dition. To this end, we use trigonometric series to expand

the fundamental solution at the boundary,

1

u(rppr) lr=k=— ZYO(BIH'J;’P/) (20)

- i |4}, cos(n6) + B, sin(nf)] .
n=0

where R, = VR2 + 12— 2Rr’ cos(6 — ). Then the coeffi-

cients are obtained as

, 1 27T
A= G L d0 Yo(Bmrk ) cos(nd) ,
1 27T
B, =—— J d0 Yo(Bmrhp)sin(nd) (1)
471 0
where
2, n=0
wp = , (22)
I, n#0

At the boundary, Eq. (19) reads

g(P.P) |y—g= Z Tn(BuR)[ Ay cos(nd) + B sin(nf)| . (23)
n=0

Comparing the coefficients in Egs. (20) and (23), we obtain

1 27T
An B — d9Y B rR , 0 ,
41w, I (BmR) J'O 0(Bm PP )cos(nb)

1 27T .
Bn :m JO dg YO(er}R;P/) S]n(ng) .
(24)

Finally, the series solution of the Green’s function of the

diffusion equation in cylindrical coordinates reads

, 1 N
G(P,P) Z_ZYO(erPP’)+ g Jn(Bmr)X
n=0

[An cos(né) + B, sin(ne)] , (25)

when the source is at the center of the cylinder, the Green’s
function is reduced to a simple form,

1 Yo(BmR)

7 To(BuR) Jo(Bmr).  (26)

1
G(r,0) = =7 Yo(Bmr) +

2.2 Sphere case

In this subsection, we consider a finite spherical sub-
critical core with radius R. Although a real reactor has

rarely been designed in the shape of a sphere, it is still

worth investigating as a practical three-dimensional model.
In spherical coordinates, Eq. (10) becomes
1 0(,0) 1 & 1 4 1 &
——|r—|+5—==+ —
r2or\ dr] r* 06* rltan@ 00  rZsinf Ag?

BL|G(P.P)+5(P.P)=0, Q27)

with the boundary condition
G(P,P') |,=r=0. (28)
Here our notation for P and P’ becomes P = (r,60,¢) and
P'=(.0.¢).
Following the same procedure as in subsection 2.1,

it is natural to obtain the series expression of the Green’s

NV
+(—) x
R
i & Joy+1/2(Bm?) y
Jni+172(BmR)

function in spherical coordinates,

) 1 cos(Bmrppr)
i

n1=0n,=0

[Coymy Fo (6, )+ Dy FO (6,01, (29)

where Cy,,,, and D, ,, are coefficients, F 211112 and F ,(121212 are
orthogonal functions in the series expansion of the bound-

ary condition,

Fil =s @[l s costra,
Fi2), =sin"(6) [Crlzfz(cos 9)]n2 sin(nz). (30)

Here C;} are ultra-spherical polynomials and given by[m:

W2 CDIr+n—-1)

1N(n—21)!

1
r =

(2cos@) 2D

(31

The coefficients C,,,, and D, ,, are determined by the

Cl(cosh) =

boundary condition,

1 27T
[N — d6dg x
" S YN, L J: ¢

1
— cos(erﬁp,)F,(qll),,2 (6, ¢)sinf,

rop
1 27T
Dpipy =——— dodg x
"2 AN Jo J: i
1 .
. coS(BmTRp ) Fh, (6, @)sind (32)
PP’
where
2_(n1+n2)! 2 (33)
T (m-m)! Qo+
PR =[R2+ ~2Rr cos(©) (34)
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with cos(0®) defined by and for spherical symmetry it is
cos(®) = cosfcosd +sinfsind’ cos(p—¢’) . (35) Ry = T (43)
By

When the source is at the center of the sphere, Eq. (29) is

reduced to a simple form,

G(r.0) = - cos(Bmr)  cos(BnR) (L)—l/2 J1/2(Bmr)

4mtr 4nR R J12(BmR) '
(36)

Obviously the above solution satisfies the boundary condi-
tion G(R,0) = 0.

2.3 Neutron flux distribution

As an example, we will numerically calculate the flux
distribution of neutrons of 0.1 MeV diffusing in a multi-
plying material of enriched uranium dioxide in a cylinder.
Firstly, we need to know the material buckling By, and the
core radius R in order to evaluate the Green’s functions in
Eqgs. (26 ~ 27).

The data in Table 1 are used to calculate By, by Eq.

(7). The core radius is derived via the geometric buckling

Table 1 Parameters of fuel materials!!3]

Isotopes os/b 0a/b og/b v p/(g/cm3)

25y 9.94 2.01 1.58 244

28y 11.88 0.18 0 0 10.4

160 3.65  3.19x1073 0 0

which can be read from the eigenvalue equation[m]
. P
Lo(r) = (r), (37
keff

where [ and P are destruction and production operators

respectively,

L=-DV?’+3,, (38)

P=vs;. (39)

Thus Eq. (37) can be cast into the following form
V2p(r)+Bip(r) =0, (40)

where Bé is called the geometric buckling and given by

1 [(vZ
Bé:B(k;—Za). (41)
€

Then the core radius can be solved from the zero flux
boundary condition. For cylindrical symmetry it is

2.4
R, = 2405
Bg

, (42)

Thus we have obtained the core radius as a function of sub-
criticality and macroscopic cross-sections.

We see that the neutron flux distribution depends on
the depth of the subcritical state. For simplicity, we assume
that a point source is located at the center of the core. The
neutron flux can then be obtained from the Green’s func-
tion in Eq. (26). As shown in Table 2 and Fig. 1, the closer
the system is to the critical state, the higher the neutron flux
generated per source neutron will be, implying that the less
important role the external neutron source will play. In ad-
dition, as kg goes to unity, the neutron flux profile will
approach the shape of the Bessel function of the first kind
as in the critical case. Note that we have re-scaled the neu-
tron flux in the critical case so that it can be compared to
those in subcritical ones since the neutron flux in a critical

system can have arbitrary value.

Table 2 Parameters chosen for Fig. 1

Status keft £ Bm/m™!
case 1 0.85 0.0931 1.8094
case 2 0.90 0.1032 3.1003
case 3 0.95 0.1133 3.9922
case 4 0.99 0.1223 4.4637

1.0 == case |
e case 2
,::_' 08 === case 3
o — case 4
€ 06 s~ — Scaled critical case
50
5
o 04
= g
g ] i R
e SR S
0.0 R
0.0 0.1 0.2 0.3 0.4 0.5
Distance from the source/m
Fig. 1 Neutron flux distribution in subcritical states

Another factor that will influence the neutron flux dis-
tribution is the core size (i.e. the radius R in our case).
In the subcritical system, the external neutron source in-
troduces more dependence of the neutron flux distribution
on intrinsic properties of the core. The subcritical system
can maintain a certain subcritical state (e.g. keg = 0.96) by
changing both the fissile material enrichment & of 23U and

the radius of the core. A smaller radius corresponds to a
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higher enrichment. Different groups of R and the corre-
sponding & lead to different neutron flux profiles, as shown
in Table 3 and Fig. 2. For larger size of the core and lower
enrichment, e.g. case 1, the singularity of the flux distribu-
tion introduced by the source term is more apparent than
the opposite case, e.g. case 4. We now study the impact
of the external source position. Fig. 3 shows the relative

neutron flux distribution (normalized by the maximal val-

Relative neutron flux

ue of the neutron flux in case of Fig. 3(a) with the source at
the center). kg is set to 0.96. The radius of the core is set
to 0.8 m, and the corresponding ¢ is solved to be 0.094 7.
The source position is denoted by r’. The maximum value
of the neutron flux always appears at the source position.
As the source moves to the boundary off the center, the

neutron flux becomes lower due to higher neutron escape

probability near the boundary.

Fig.2 (color online) Relative neutron flux distribution in a certain subcritical state when the source position is at the center.
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Fig. 3 (color online) Relative neutron flux distributions in a certain subcritical state with source positions at or off the center.
http://www.npr.ac.cn
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Table 3 Parameters in the one group cylindrical model
Status R/m >y /m™! Z/m! 3¢ /m~! Bp/m™! Bg/m‘1 &
case 1 1 44.1103 0.8043 0.3335 1.1241 2.3981 0.0899
case 2 0.8 44.0909 0.8249 0.3513 2.0685 3.0006 0.0947
case 3 0.6 43.0487 0.8696 0.3899 3.2867 4.0051 0.1051
case 4 0.4 43.9287 0.9969 0.4997 54130 5.9996 0.1347

3 Subcritical multiplication factor

We know from Egs. (1 ~ 4) that the subcritical multi-
plication factor ks is related to the neutron flux. In the pre-
vious section, we have analyzed how the core properties
and the external source influence the neutron flux distribu-
tion. In this section we will calculate ks and study its depen-
dence on the core properties and the external source. We
will show how the values of kg and k. depend on the core
radius R, the corresponding fissile material enrichment &
and the source position 7.

We also consider the cylinder case as an example.
When the source is at the center of the core, the integrated
neutron flux becomes (see Appendix A for detailed deriva-

tion)

J d3r ¢(r) :27'(J dr G(r,0)r
\%4 \%4

TIR
=—— |Yi(BuR
2Bm|: 1( m )+
Yo(BmR)

Jo(BmR)

BRmt

Ji(BmR)| . (44)

Thus total numbers of fission neutrons F and source neu-

trons S are given by

ZfTCR
F=v | &Eroyr Sl Ui
fJV ¢s( ) 2Bm
2 Yo(BnR)
Y1 (BnR - BmR

X l( m )+ BmRT[ Jo(BmR) Jl( m ) 5
S =J d3rs(r)=J d&*rDs(r)=D . (45)

\%4 \%4

Then kg can be calculated from Egs. (144 ~ 45). As pointed
out in section 2, in order to maintain a certain subcritical
state, we need to modify both the fissile material enrich-
ment and the core size for a balance between the fission
reaction rate and the neutron leakage. This is the same
as in a critical state. However, the source driven subcriti-
cal system has more complicated neutron balance relation.
Since external source neutrons are not generated by the
core’s fission reaction, the effects of changing the enrich-

ment and the core radius are different for fission neutrons

from source neutrons. For instance, we increase the core
size and correspondingly decrease the enrichment, then the
fission reaction rate will decrease. Since the source neu-
trons mainly come from the center and are less sensitive
to the increasing leakage effect than average fission neu-
trons. This means larger proportion of leakage neutrons in
the total fission neutrons than for external source neutrons.
According to Eqgs. (1 ~ 4), ks will decrease with the core
radius.

The results for kg as a function of R are shown in Fig.
4. The corresponding fissile material enrichment ranges
from 0.09 to 0.13 for each subcriticality k.. We see that kg
slightly decreases with the core radius, which is consistent
to the above arguments. Although the decrease is small, it
is still expected to have an impact on the energy gain, be-
cause it is proportional to ks/(1 — k) as in Eq. (4) and k; is
normally set to values close to unity by design in practical
subcritical reactors. We also see that k; is always larger
than k. when the source is placed at the center of the core
due to a high source neutron efficiency. And the difference

between kg and k. will be smaller as they approach unity.

1.00
0.98

096} k,=095

0.94
0.92

k,=0.90
~" 090 - - -

0.88
086} k=085

0.84
0.82

0.80
0.0 0.2 0.4 0.6 0.8 1.0

R/m

Fig. 4 (color online) k; as a function of the core radius.

Shown in Fig. 5 is the multiplication factor ks as a
function of the external source position . We set ke =
0.95 and R = 0.5 m. When the source is off the center, the
expression for the Green’s function for the neutron flux is

complicated as shown in Eq. (25). It is impossible to ob-
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tain an analytical form of the neutron flux from Eq. (25).
So we choose five different source positions (r'=0, 0.1, 0.2,
0.3 and 0.4 m) and numerically calculate the integral of the
neutron flux to give k. The results indicate that the highest
value of kg is achieved when the source is at the center and
source neutrons have the largest multiplication efficiency.
As the source moves to the boundary, the leakage effect
will play a more important role on source neutrons, thus kg
becomes smaller. When the source is at a certain distance
from the center, the difference between kg and k. will dis-
appear, which means source neutrons have the same multi-

plication capability as the average fission neutrons.

0.98

0.96 k=095

= 0.94

0.92

0.90 .
0.0 0.1 0.2 0.3 0.4

r'/m
Fig.5 k; as a function of the source position

4 Conclusion

We apply the Fourier method to obtain Green’s func-
tions of the one group inhomogeneous neutron diffusion
equation in cylindrical and spherical symmetries. Based
on these analytical solutions, we have studied the depen-
dence of the neutron flux on the subcriticality, the size of
the subcritical system and the position of the external neu-
tron source.

For most of source positions, k; is different from k.
Thus, using the conventional subcriticality kg to evaluate
the neutron production capability will lead to considerable
inaccuracy. For certain subcritical states, ks varies with the
core size. Although this variation is small, the energy gain
is sensitive to ks and then the core size, which has to be
taken into account in the design of the source driven sub-

critical system.

5 Appendix

5.1 Some discussions on the singularity of the neu-
tron flux distribution at source position

The external source term will lead to divergence in the
neutron flux at the source position, see Egs. (26 ~ 27). It
is due to the invalidity of the diffusion approximation from

the Fick’s law at or very close to the source position. Thus,

for analysis purpose, we use the neutron flux at 2 cm off
the source position as the maximum value in plotting the
neutron flux profiles.

However, the integral of the neutron flux is finite
and makes the subcritical multiplication factor kg regular.

To obtain Eq. (44), we need to prove the convergence of

dr Yo(Bmr)r, which can be written as

1
J: dr Yo(Bunr = 2 [Y1(BuR)BmR = €Y1(€) leo | - (46)

The Bessel function of the first kind has the series form“zJ,

T = i (_l)k 1 ( z )(Zktv) . @7
k=0

k! T(xv+k+1)\2
From 1 (63 8]
Yn<z)=;{5—<—1) S }H (48)

the Bessel function of the second kind becomes

n—1

_2 7z 15 (n—k=1)! [ z\@n)
Y =hen g -2 ) S (3)
1 CF
F;O k!(n+k)![‘/’(”JFI‘JFI)Jr
2 \2k+n)
wi)(3) (49)

where y(z) = I''(z)/I'(z) and I'(z) is the Gamma function.

When n > 1 and z — 0, the first and third terms of Eq. (49)

go toward zero, left with only the second term,

(n—-1)! ( z
T 2

and so we have %i_)r%zYl (z) =2/m.

(=n)
Y2 ~ ) L =D, (50
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