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Abstract：The analytical form of the Green’s functions of the inhomogeneous diffusion equation for neutrons
are obtained using the Fourier method. The neutron flux distributions with the external neutron source located
at arbitrary positions are calculated from the Green’s functions. In a subcritical system, the dependences of the
subcritical multiplication factor ks on the source position and the core size with the fixed subcriticality keff are
analyzed based on the series solution. It is found that ks decreases with the core size. Although this variation is
small, the energy gain is sensitive to ks and then the core size, which has to be taken into account in the design
of the source driven subcritical system.
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1 Introduction
In recent years, the wide interest in developing the

new form of Accelerator Driven System (ADS) arises to

meet the urgent demand for nuclear energy and trans-

mutation of long-life radio-toxic by-products. These by-

products are generated from large number of existing

nuclear power plants and raise a serious environmental

problem[1−2]. Subcritical core is characterized by its in-

trinsic safety and ability of energy amplification[3]. Both

features are due to certain degree of subcriticality of the

system, conventionally described by the effective multipli-

cation factor keff . This factor is extracted from the eigen-

value of neutron transport equation, which obviously de-

pends only on the inherent property of the core. However,

when considering the effect of external source neutrons, we

should use a new parameter subcritical multiplication fac-

tor ks to evaluate the efficiency of external source neutrons.

ks is defined as the fraction of the fission neutrons in the

subcritical system[4–6]:

ks =
F

F +S
, (1)

F =
∫

V

∫∞
0

d3rrrdE νΣf(rrr,E)ϕs(rrr,E) , (2)

S =
∫

V

∫∞
0

d3rrrdE s(rrr, E) , (3)

where F and S are total number of fission and source

neutrons respectively, V is the the volume of the system,

s(rrr, E) is the external neutron source density, ν is the

average number of fission neutrons per fission reaction,

ϕs(rrr, E) is the neutron flux, and Σf(rrr, E) is the macroscop-

ic fission cross-section.

One of main goals of ADS is to amplify the beam en-

ergy for power production. So the energy generated by to-

tal fission reactions in the multiplying medium is expected

to be as high as possible for economic purpose. To evalu-

ate the energy amplification, the energy gain g is defined as

the ratio of the energy produced by the secondary fissions

to the proton energy[7]:

g =
0.2ksN0

ν(1− ks)Ep
, (4)

where N0 is the number of primary neutrons produced by
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the interaction of a proton with spallation target, Ep is the

proton energy. When ks approaches unity, the energy gain

will be infinitely large.

To obtain a high g, the core should be very close to

the critical point. However, a subcritical reactor operated

far from the critical point is considered to be safer than the

one which is nearly critical. We can see from Eq. (4) that

the energy gain is directly related to the subcritical multi-

plication factor ks, while the safety is determined by sub-

criticality keff . The two parameters are different unless the

system is exactly critical. In this paper, we will build a sim-

ple subcritical reactor model with cylindrical and spherical

symmetry. The model is based on diffusion approxima-

tion and captures main features of subcritical reactor. The

neutron flux distribution can be obtained using the Green’s

function technique. An analytical expression for the mul-

tiplication factor ks can be obtained as a function of the

external neutron source position and the radius of the sub-

critical reactor. We will investigate the difference between

ks and keff which may provide some guidance for the de-

sign of ADS.

2 Green’s function for neutron diffu-
sion equation
We consider a bare subcritical reactor model with on-

ly one energy group. The neutron flux is a function of rrr

only. With general notations, the static neutron diffusion

equation with an external source can be written as:

D∇2ϕs(rrr)+ (νΣf −Σa)ϕs(rrr)+ s(rrr) =0 , (5)

ϕs(rrr = boundary surface) =0 . (6)

Eq. (6) is the usual boundary condition in diffusion theory.

Here Σa is the macroscopic absorption cross section, D is

the diffusion constant, and the subscript ‘s’ represents that

the system is subcritical. With the material buckling Bm

and the source term q(rrr),

B2
m =

(νΣf −Σa)
D

, (7)

q(rrr) =
s(rrr)
D

, (8)

Eq. (5) can be written in a simple form,

∇2ϕs(rrr)+B2
mϕs(rrr)+q(rrr) = 0 . (9)

Eq. (9) is the main equation we are going to solve.

We will use the Green’s function method to solve this

equation[9−10], where the static Green’s function is defined

via

∇2G(rrr, rrr′)+B2
mG(rrr, rrr′)+ δ(rrr− rrr′′′) = 0 , (10)

and the neutron flux can then be obtained by

ϕs(rrr) =
∫

V
d3rrr′ G(rrr, rrr′)q(rrr′) . (11)

2.1 Cylinder case

In this subsection, we consider an infinite cylinder

with radius R. In cylindrical coordinates, Eq. (10) is writ-

ten in the following form,[
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2 +B2
m

]
G(P,P′)+δ(P,P′) = 0 ,

(12)

with the boundary condition

G(P,P′) |r=R= 0 . (13)

Here we used the notation P ≡ (r, θ) and P′ ≡ (r′, θ′).

The fundamental solution u(rPP′ ) of the inhomoge-

neous diffusion equation satisfies

∂2

∂r2 u (rPP′ )+
1
r
∂

∂r
u (rPP′ )+

1
r2

∂2

∂θ2 u (rPP′ )

+B2
mu (rPP′ ) = −δ

(
P−P′

)
, (14)

where rPP′ is the distance between the two points P and P′

in the cylinder. The solution reads[11]

u(rPP′ ) = −
1
4

Y0(BmrPP′ ) , (15)

where Y0 denotes the Bessel function of the second kind.

Then the Green’s function can be decomposed into two

parts

G(P,P′) = u(rPP′ )+g(P,P′) , (16)

where g(P,P′) is the solution of the homogeneous equation

∂2

∂r2 g(P,P′)+
1
r
∂

∂r
g(P,P′)+

1
r2

∂2

∂θ2 g(P,P′)

+B2
mg(P,P′) = 0 , (17)

satisfying the boundary condition

g(P,P′) |r=R= −u(rPP′ ) |r=R . (18)

The homogeneous solution g(P,P′) can be expanded in the

series

g(P,P′) =
∞∑

n=0

Jn(Bmr)
[
An cos(nθ)+Bn sin(nθ)

]
, (19)
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where Jn is the Bessel function of the first kind, An and

Bn are coefficients to be determined by the boundary con-

dition. To this end, we use trigonometric series to expand

the fundamental solution at the boundary,

u(rPP′ ) |r=R=−
1
4

Y0(BmrR
PP′ ) (20)

=

∞∑
n=0

[
A′n cos(nθ)+B′n sin(nθ)

]
,

where rR
PP′ =

√
R2+ r′2−2Rr′ cos(θ− θ′). Then the coeffi-

cients are obtained as

A′n =−
1

4πωn

∫2π

0
dθ Y0(BmrR

PP′ )cos(nθ) ,

B′n =−
1

4π

∫2π

0
dθ Y0(BmrR

PP′ ) sin(nθ) , (21)

where

ωn =

 2, n = 0

1, n , 0
. (22)

At the boundary, Eq. (19) reads

g(P,P′) |r=R=

∞∑
n=0

Jn(BmR)
[
An cos(nθ)+Bn sin(nθ)

]
. (23)

Comparing the coefficients in Eqs. (20) and (23), we obtain

An =
1

4πωnJn(BmR)

∫2π

0
dθ Y0(BmrR

PP′ )cos(nθ) ,

Bn =
1

4πJn(BmR)

∫2π

0
dθ Y0(BmrR

PP′ ) sin(nθ) .

(24)

Finally, the series solution of the Green’s function of the

diffusion equation in cylindrical coordinates reads

G(P,P′) =− 1
4

Y0(BmrPP′ )+
∞∑

n=0

Jn(Bmr)×[
An cos(nθ)+Bn sin(nθ)

]
, (25)

when the source is at the center of the cylinder, the Green’s

function is reduced to a simple form,

G(r,0) = − 1
4

Y0(Bmr)+
1
4

Y0(BmR)
J0(BmR)

J0(Bmr) . (26)

2.2 Sphere case

In this subsection, we consider a finite spherical sub-

critical core with radius R. Although a real reactor has

rarely been designed in the shape of a sphere, it is still

worth investigating as a practical three-dimensional model.

In spherical coordinates, Eq. (10) becomes[
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2

∂2

∂θ2 +
1

r2 tanθ
∂

∂θ
+

1
r2 sinθ

∂2

∂φ2 +

B2
m

]
G(P,P′)+δ(P,P′) = 0 , (27)

with the boundary condition

G(P,P′) |r=R= 0 . (28)

Here our notation for P and P′ becomes P ≡ (r, θ,φ) and

P′ ≡ (r′, θ′,φ′).

Following the same procedure as in subsection 2.1,

it is natural to obtain the series expression of the Green’s

function in spherical coordinates,

G(P,P′) =− 1
4π

cos(BmrPP′ )
rPP′

+

( r
R

)1/2
×

∞∑
n1=0

n1∑
n2=0

Jn1+1/2(Bmr)
Jn1+1/2(BmR)

×

[Cn1n2 F(1)
n1n2 (θ, φ)+Dn1n2 F(2)

n1n2 (θ, φ)] , (29)

where Cn1n2 and Dn1n2 are coefficients, F(1)
n1n2 and F(2)

n1n2 are

orthogonal functions in the series expansion of the bound-

ary condition,

F(1)
n1n2 =sinn2 (θ)

[
C1/2

n1 (cosθ)
]n2 cos(n2φ),

F(2)
n1n2 =sinn2 (θ)

[
C1/2

n1 (cosθ)
]n2 sin(n2φ). (30)

Here Cλ
n are ultra-spherical polynomials and given by[12]:

Cλ
n(cosθ) =

1
Γ(λ)

[n/2]∑
l=0

(−1)lΓ(λ+n− l)
l!(n−2l)!

(2cosθ)(n−2l) .

(31)

The coefficients Cn1n2 and Dn1n2 are determined by the

boundary condition,

Cn1n2 =
1

4N2π2ωn2

∫2π

0

∫π
0

dθdφ ×

1
rR

PP′
cos(BmrR

PP′ )F
(1)
n1n2 (θ, φ) sinθ ,

Dn1n2 =
1

4N2π2

∫2π

0

∫π
0

dθdφ ×

1
rR

PP′
cos(BmrR

PP′ )F
(2)
n1n2 (θ, φ) sinθ , (32)

where

N2 =
(n1+n2)!
(n1−n2)!

2
(2n1+1)

, (33)

rR
PP′ =

√
R2+ r′2−2Rr′ cos(Θ) , (34)
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with cos(Θ) defined by

cos(Θ) = cosθcosθ′+ sinθ sinθ′ cos(φ−φ′) . (35)

When the source is at the center of the sphere, Eq. (29) is

reduced to a simple form,

G(r,0) = − cos(Bmr)
4πr

+
cos(BmR)

4πR

( r
R

)−1/2 J1/2(Bmr)
J1/2(BmR)

.

(36)

Obviously the above solution satisfies the boundary condi-

tion G(R,0) = 0.

2.3 Neutron flux distribution

As an example, we will numerically calculate the flux

distribution of neutrons of 0.1 MeV diffusing in a multi-

plying material of enriched uranium dioxide in a cylinder.

Firstly, we need to know the material buckling Bm and the

core radius R in order to evaluate the Green’s functions in

Eqs. (26 ∼ 27).

The data in Table 1 are used to calculate Bm by Eq.

(7). The core radius is derived via the geometric buckling

Table 1 Parameters of fuel materials[[[13]]]

Isotopes σs/b σa/b σf /b ν ρ/(g/cm3)

235U 9.94 2.01 1.58 2.44
10.4238U 11.88 0.18 0 0

16O 3.65 3.19×10−5 0 0

which can be read from the eigenvalue equation[14]

L̂ϕ(rrr) =
P̂

keff
ϕ(rrr) , (37)

where L̂ and P̂ are destruction and production operators

respectively,

L̂ =−D∇2+Σa , (38)

P̂ =νΣf . (39)

Thus Eq. (37) can be cast into the following form

∇2ϕ(rrr)+B2
gϕ(rrr) = 0 , (40)

where B2
g is called the geometric buckling and given by

B2
g =

1
D

(
νΣf

keff
−Σa

)
. (41)

Then the core radius can be solved from the zero flux

boundary condition. For cylindrical symmetry it is

Rc =
2.405

Bg
, (42)

and for spherical symmetry it is

Rs =
π

Bg
. (43)

Thus we have obtained the core radius as a function of sub-

criticality and macroscopic cross-sections.

We see that the neutron flux distribution depends on

the depth of the subcritical state. For simplicity, we assume

that a point source is located at the center of the core. The

neutron flux can then be obtained from the Green’s func-

tion in Eq. (26). As shown in Table 2 and Fig. 1, the closer

the system is to the critical state, the higher the neutron flux

generated per source neutron will be, implying that the less

important role the external neutron source will play. In ad-

dition, as keff goes to unity, the neutron flux profile will

approach the shape of the Bessel function of the first kind

as in the critical case. Note that we have re-scaled the neu-

tron flux in the critical case so that it can be compared to

those in subcritical ones since the neutron flux in a critical

system can have arbitrary value.

Table 2 Parameters chosen for Fig. 1

Status keff ε Bm/m−1

case 1 0.85 0.0931 1.8094
case 2 0.90 0.1032 3.1003
case 3 0.95 0.1133 3.9922
case 4 0.99 0.1223 4.4637

Fig. 1 Neutron flux distribution in subcritical states

Another factor that will influence the neutron flux dis-

tribution is the core size (i.e. the radius R in our case).

In the subcritical system, the external neutron source in-

troduces more dependence of the neutron flux distribution

on intrinsic properties of the core. The subcritical system

can maintain a certain subcritical state (e.g. keff = 0.96) by

changing both the fissile material enrichment ε of 235U and

the radius of the core. A smaller radius corresponds to a
http://www.npr.ac.cn
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higher enrichment. Different groups of R and the corre-

sponding ε lead to different neutron flux profiles, as shown

in Table 3 and Fig. 2. For larger size of the core and lower

enrichment, e.g. case 1, the singularity of the flux distribu-

tion introduced by the source term is more apparent than

the opposite case, e.g. case 4. We now study the impact

of the external source position. Fig. 3 shows the relative

neutron flux distribution (normalized by the maximal val-

ue of the neutron flux in case of Fig. 3(a) with the source at

the center). keff is set to 0.96. The radius of the core is set

to 0.8 m, and the corresponding ε is solved to be 0.094 7.

The source position is denoted by r′. The maximum value

of the neutron flux always appears at the source position.

As the source moves to the boundary off the center, the

neutron flux becomes lower due to higher neutron escape

probability near the boundary.

Fig. 2 (color online) Relative neutron flux distribution in a certain subcritical state when the source position is at the center.

Fig. 3 (color online) Relative neutron flux distributions in a certain subcritical state with source positions at or off the center.
http://www.npr.ac.cn
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Table 3 Parameters in the one group cylindrical model
Status R/m Σs/m−1 Σa/m−1 Σf /m−1 Bm/m−1 Bg/m−1 ε

case 1 1 44.110 3 0.804 3 0.333 5 1.124 1 2.3981 0.0899
case 2 0.8 44.090 9 0.824 9 0.351 3 2.068 5 3.000 6 0.094 7
case 3 0.6 43.048 7 0.869 6 0.389 9 3.286 7 4.005 1 0.105 1
case 4 0.4 43.928 7 0.996 9 0.499 7 5.413 0 5.999 6 0.134 7

3 Subcritical multiplication factor

We know from Eqs. (1 ∼ 4) that the subcritical multi-

plication factor ks is related to the neutron flux. In the pre-

vious section, we have analyzed how the core properties

and the external source influence the neutron flux distribu-

tion. In this section we will calculate ks and study its depen-

dence on the core properties and the external source. We

will show how the values of ks and keff depend on the core

radius R, the corresponding fissile material enrichment ε

and the source position r′.

We also consider the cylinder case as an example.

When the source is at the center of the core, the integrated

neutron flux becomes (see Appendix A for detailed deriva-

tion) ∫
V

d3rrr ϕs(rrr) =2π
∫

V
dr G(r,0)r

=− πR
2Bm

[
Y1(BmR)+

2
BmRπ

−

Y0(BmR)
J0(BmR)

J1(BmR)
]
. (44)

Thus total numbers of fission neutrons F and source neu-

trons S are given by

F =νΣf

∫
V

d3rrrϕs(rrr) = − νΣfπR
2Bm

×
[
Y1(BmR)+

2
BmRπ

− Y0(BmR)
J0(BmR)

J1(BmR)
]
,

S =
∫

V
d3rrrs(rrr) =

∫
V

d3rrrDδ(rrr) = D . (45)

Then ks can be calculated from Eqs. (144∼ 45). As pointed

out in section 2, in order to maintain a certain subcritical

state, we need to modify both the fissile material enrich-

ment and the core size for a balance between the fission

reaction rate and the neutron leakage. This is the same

as in a critical state. However, the source driven subcriti-

cal system has more complicated neutron balance relation.

Since external source neutrons are not generated by the

core’s fission reaction, the effects of changing the enrich-

ment and the core radius are different for fission neutrons

from source neutrons. For instance, we increase the core

size and correspondingly decrease the enrichment, then the

fission reaction rate will decrease. Since the source neu-

trons mainly come from the center and are less sensitive

to the increasing leakage effect than average fission neu-

trons. This means larger proportion of leakage neutrons in

the total fission neutrons than for external source neutrons.

According to Eqs. (1 ∼ 4), ks will decrease with the core

radius.

The results for ks as a function of R are shown in Fig.

4. The corresponding fissile material enrichment ranges

from 0.09 to 0.13 for each subcriticality keff . We see that ks

slightly decreases with the core radius, which is consistent

to the above arguments. Although the decrease is small, it

is still expected to have an impact on the energy gain, be-

cause it is proportional to ks/(1− ks) as in Eq. (4) and ks is

normally set to values close to unity by design in practical

subcritical reactors. We also see that ks is always larger

than keff when the source is placed at the center of the core

due to a high source neutron efficiency. And the difference

between ks and keff will be smaller as they approach unity.

Fig. 4 (color online) ks as a function of the core radius.

Shown in Fig. 5 is the multiplication factor ks as a

function of the external source position r′. We set keff =

0.95 and R = 0.5 m. When the source is off the center, the

expression for the Green’s function for the neutron flux is

complicated as shown in Eq. (25). It is impossible to ob-
http://www.npr.ac.cn
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tain an analytical form of the neutron flux from Eq. (25).

So we choose five different source positions (r′=0, 0.1, 0.2,

0.3 and 0.4 m) and numerically calculate the integral of the

neutron flux to give ks. The results indicate that the highest

value of ks is achieved when the source is at the center and

source neutrons have the largest multiplication efficiency.

As the source moves to the boundary, the leakage effect

will play a more important role on source neutrons, thus ks

becomes smaller. When the source is at a certain distance

from the center, the difference between ks and keff will dis-

appear, which means source neutrons have the same multi-

plication capability as the average fission neutrons.

Fig. 5 ks as a function of the source position

4 Conclusion

We apply the Fourier method to obtain Green’s func-

tions of the one group inhomogeneous neutron diffusion

equation in cylindrical and spherical symmetries. Based

on these analytical solutions, we have studied the depen-

dence of the neutron flux on the subcriticality, the size of

the subcritical system and the position of the external neu-

tron source.

For most of source positions, ks is different from keff .

Thus, using the conventional subcriticality keff to evaluate

the neutron production capability will lead to considerable

inaccuracy. For certain subcritical states, ks varies with the

core size. Although this variation is small, the energy gain

is sensitive to ks and then the core size, which has to be

taken into account in the design of the source driven sub-

critical system.

5 Appendix
5.1 Some discussions on the singularity of the neu-

tron flux distribution at source position

The external source term will lead to divergence in the

neutron flux at the source position, see Eqs. (26 ∼ 27). It

is due to the invalidity of the diffusion approximation from

the Fick’s law at or very close to the source position. Thus,

for analysis purpose, we use the neutron flux at 2 cm off

the source position as the maximum value in plotting the

neutron flux profiles.

However, the integral of the neutron flux is finite

and makes the subcritical multiplication factor ks regular.

To obtain Eq. (44), we need to prove the convergence of∫R

0
dr Y0(Bmr)r, which can be written as∫R

0
dr Y0(Bmr)r =

1
B2

m

[
Y1(BmR)BmR− ϵY1(ϵ) |ϵ→0

]
. (46)

The Bessel function of the first kind has the series form[12],

J±ν(z) =
∞∑

k=0

(−1)k

k!
1

Γ(±ν+ k+1)

( z
2

)(2k±ν)
. (47)

From

Yn(z) =
1
π

{
∂Jν
∂ν
− (−1)n ∂J−ν

∂ν

}
ν→n

, (48)

the Bessel function of the second kind becomes

Yn(z) =
2
π

Jn(z) ln
z
2
− 1

π

n−1∑
k=0

(n− k−1)!
k!

( z
2

)(2k−n)
−

1
π

∞∑
k=0

(−1)k

k!(n+ k)!

[
ψ(n+ k+1)+

ψ(k+1)
] ( z

2

)(2k+n)
. (49)

where ψ(z) = Γ′(z)/Γ(z) and Γ(z) is the Gamma function.

When n > 1 and z→ 0, the first and third terms of Eq. (49)

go toward zero, left with only the second term,

Yn(z) ∼ (n−1)!
π

( z
2

)(−n)
, (n > 1) , (50)

and so we have lim
z→0

zY1(z) = 2/π.
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加速器驱动次临界系统中非齐次中子扩散方程的一种解析解

井田1，王相綦1，王群2，武红利1，龚晓冬1

( 1.中国科技大学国家同步辐射实验室，安徽合肥 230029；
2.中国科技大学近代物理系，安徽合肥 230027 )

摘要: 利用傅里叶方法得到了非齐次中子扩散方程格林函数的解析形式，通过格林函数计算了当外源在堆芯

任意位置时的中子通量密度分布，分析了在次临界反应堆系统中，次临界倍增系数 ks与外源位置和相同次临界

深度下堆芯尺寸的依赖关系。发现，ks随着堆芯尺寸的增加而减小，这点变化虽小，但能量增益对 ks以及堆芯

尺寸是相当敏感的，加速器驱动的次临界系统 (ADS)设计时应必须予以考虑。
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