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Abstract: The ground state properties of **Sn at equilibrium and at large compression are investi-
gated, within the framework of the radially constrained spherical Hartree-Fock (CSHF) approxi-
mation. The delta resonance effects on the properties of neutron-rich double magic spherical nucle-
us, '"*Sn, in its ground state and the state under static compression are studied. The sensitivity of
the nucleon size and A model spaces is investigated. At equilibrium, mixing between nucleon and
A’s in the largest model space of nine major nucleon shells plus 10 A orbitals was found. Expan-
ding the nucleon model space has a larger effect on reducing the static compression modulus and
softe-ning the nuclear equation of state than increasing the number of A states. It was found that
the most of the increase in the nuclear energy generated under compression is used to create the
massive A particles. For '"Sn nucleus under compression at 12 times the normal nuclear density,
the excited nucleons to A’s increased sharply up to 13% of the total number of constituents. This
result is consistent with the values extracted from relativistic heavy-ion collisions. The single par-
ticle energy levels calculated and their behaviors under compression are examined too. A good
agreement between results with effective Hamiltonian and the phenomenological shell model for
the low lying single-particle spectra is obtained.

Key words: nuclear structure; compressed finite nuclei; A-resonance; Hartree-Fock method; sin-
gle particle energy
CLC number: O571. 21

Document code: A

Introduction

important role many issues in nuclear physics,

such as the nucleon-nucleon scattering, nuclear

A realistic, microscopically derived, nuclear . o
structure, heavy-ion collisions, and so on.

equation of state is of great importance in interpre-
ting the results of high-energy particle-nucleus and
nucleus-nucleus collisions. A significant step to-
wards that is to extend the conventional microscop-
ic nuclear model to include delta(A) resonances in
order to incorporate the dynamics associated with
the structure of nucleons.

The A resonance degree of freedom plays an
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Compressed nuclei are expected to be occurred
during high-energy heavy-ion collisions'?. The is-
sue of compressed nuclei is important in astrophys-
ics. Thus, the problem of compressed nuclei can-
not be ignored. Their experimental as well as their
theoretical investigation, however, are intricate in
particular since the compressed state is hard to re-

alize statically. The theoretical analyses of heavy-
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ion collisions consequently start from kinetic equa-
tions. Nuclei are not infinitely extended and have
no stabilizing crystalline background as solids,
which can be assumed in band structure calcula-
tions of solids. The structure of nuclei with their
finite number of particles has to be calculated from
extensive many-body problems or simulating an ef-
fective nucleon-nucleon(N-N) interaction and tran-
sition potentials which are not sufficiently well
known.

One of the most fundamental and elusive
problems in theoretical nuclear physics has been to
understand the structure of finite nuclei in terms of
the N-N interaction™. In conventional non-relativ-
istic microscopic structure calculations, the nucle-
us is considered as a composite system of elementa-
ry particles(protons and neutrons) with no allowed
internal degree of freedom. With the advent of
high precision experiments at intermediate and
high energies using a variety of probes, the contri-
bution of baryon resonances to the structure of nu-
clei in their ground state and under compression
becomes a major experimental and theoretical ques-
[3.4]

tion For example some relativistic heavy ion

collision data show that as much as 10% of the nu-
clear system can be excited into A resonances™ ™.
Nucleons are no longer adequately treated as ele-
mentary or structureless particles, and the internal
dynamics of nucleon has to be taken into considera-
tion. One method that incorporates the dynamics
associated with the structure of the nucleons in the
nuclear system is to consider the excitations of the
nucleon into A isobars. This excitation can occur as
a result of applying an external static load on the
nucleus™. The excitation of A isobars is very im-
portant to understand structure of nuclei at inter-
mediate and high energies. It forms various probes
to provide an exciting challenge both theoretically
and experimentally, especially in the search for
constructive, coherent pion production’ '}, The A
excitation and its decay to nucleon and pion is cur-

rent interest in understand light ions, and heavy

ions collisiont %1,

Investigating the delta formation in the nucle-
us as a function of compression is very important in

[17]

understanding heavy ion collision problem''™", and

astrophysical environments of interest such as su-
pernova explosions or structure of neutron stars'®
which are very important in these days in super-
colliders when two energetic heavy ions collide.
The predictions for highly compressed nuclei at
densities accessible to relative heavy-ion collisions
are made.

The A isobar is an important mode of nucleon-
ic excitation. It is due to a resonance in pion-nucle-
on scattering, photopion and electropion produc-
tion from nucleon. In nuclear structure, the A res-
onance is an agent for corrections in the traditional
picture of the nucleus as a system of nucleons on-

lyFm. zo"

side nucleons. The A isobar provides a mechanism

So it considers constituent of nucleus be-

for pion scattering, pion production, and pion ab-
sorption™?V.

Within the framework of constrained spherical
Hartree-Fock(CSHF) approximation, in the pres-
ent work, the A resonance effects on the properties
of the neutron-rich double magic spherical nucleus,
Y2 Sn, including its ground state and the state un-
der static compression are studied. Heavy nuclei
with a large neutron excess develop a neutron skin
which is an outer coat of neutron-rich nuclear mat-

ter around the coret?”

. The region of nuclei around
doubly-magic ¥?*Sn is currently a subject of great
theoretical and experimental interest™, The
physical interesting of A resonances is useful for
the investigation on the equation of state of dense
nuclear matter at high densities where the A degree
of freedom may appear, and this is also a hot topic
of the current heavy ion physics research and com-
pact star physics as well*!. Calculations per-
formed using CSHF with a model space of nine
major oscillator shells and a realistic effective
Hamiltonian** which contains the N-N, (N-A),

and (A-A) interactions. The effective baryon-bary-
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on interaction evaluated using the Brueckner G-ma-
(2826310 and its improvement adopted in Refs.

[8, 32, 337.

The theory of effective operators plays an im-

trix

portant role in the modern approach to nuclear
structure. Effective interactions are the basic in-
gredient of the no-core shell model, one of the
methods that provides a solution to the nuclear
many-body problem starting from N-N and (N-A)
interactions. Numerical solution to the A-body
Schrédinger equation can be obtained only if one
truncates the Hilbert space to a finite space, yet
sufficiently small dimension. Restriction of the
space to a numerically tractable size requires that
operators for physical observables be replaced by
effective operators that are designed to account for
such effects™",

The results of the role of A’s in finite nuclei

33, 35—44 The nucleus

have been investigated™ *'~
has been considered as a collection of nucleons and
A-resonances. The effect of including the A-de-
grees of freedom on the Hartree-Fock energy, den-
sity distribution, A-orbital occupations, and single
particle energies in the ground state and under low
amplitude static compression, and model space
consisting of seven major oscillator shells have also
been examined. The selected nuclei were: O,
“Ca, *Ni, Zr, ""Sn, and "*Sn.

The main aim of the present work is to study
the influence of the model size on finite nuclei
properties with the constraint Hartree-Fock ap-
proach. In this work, these effects have also been
examined into heavy neutron-rich double magic
spherical nucleus "“*Sn with a larger amplitude
static compression, different model space consis-
ting of nine major oscillator shells with the CSHF
approximation, using a realistic effective Hamilto-
nian with different potential, extensive studies of
nuclear density distribution. The Bruekner G ma-
trices is used which is generated from coupled
channels NN, NA, and aNN" %21 This is done
to give a good description of NN data up to 1 GeV.

The method for calculating the effective interac-

[tz 4] {5 being used

tions of the nuclear shell mode
in this work. It is a good tool to study the highly
compressed nuclei at densities accessible to relativ-
istic heavy ion collisions.

This paper is arranged as follows: Sec. 2 spec-
ifies the effective Hamiltonian and the model space
used in the calculation. The calculation procedure
and strategy are outlined in Sec. 3. Results and dis-

cussions are presented in Sec. 4. Conclusions will

be presented in Sec. 5.

2 Effective Hamiltionian H.; and Mo-
del Space

For a nuclear system of A baryons, mass,
spin, and isospin of nucleon are: m, 1/2, and 1/2,
respectively. For A baryon, the mass, spin, and
isospin are; M, 3/2, and 3/2, respectively. The
intrinsic mass operator Hamiltonian of this system

can be written as:

H = H, (one-body) + H; (two-body) , (1)

where

A . s
Hi Cone-body) =[ 2?4(%?*
i=1

<M—m>]fz;;2, (2)

here p; is the single particle momentum operator,
/% is single particle isospin projection operator and
A is the mass number. H, arises due to the pres-
ence of the A’s. It consists of a mass correction
and a kinetic energy term for the delta particles
multiplied by a factor, which is negative since (M
= 1236 MeV, and m = 939 MeV). These terms
give nonzero contribution in A-sector only, since
projection operator 73/ works in the space 7% on-

ly. 7i, is single particle isospin projection operator.
o 7Y =02 |t (3

il =1, D

H, is the effective baryon-baryon interaction that

consists of the effective N-N interaction that is re-

presented by Reid Soft Core(RSC) potential™® and
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the transition potentials among baryons, which are

given in details in Ref. [47]. It is given by:
H, (two-body) =T, (m) + V™ +V., (5

where

DY (p.—p)’

Trel = — 2mA (6)

T.. is the relative kinetic energy operator. Here,
mA is considered total mass of nuclear system.,
VP s the strong two-baryon interaction operator
and V¢ is the two-particle Coulomb interaction act-
ing between charged baryons.

If the Schrodinger equation is solved in the full
infinite Hilbert space of all possible N and A many-
body configurations, then the exact solution has
been gotten, but this is not possible beyond light
nuclei with the mass number greater than 16 where
special procedure may be adopted™ Y. There-
fore, the infinite Hilbert space to finite model
space is truncated, and an effective Hamiltonian,
H ., to be used in the truncated model space is de-

fined. So, Eq. (5) can be written as:

H (two-body) = T.u(m) + V% + Ve, (D)
Hence V™ in Eq. (5) becomes VI:,{I?’ that is given by:
@ =VETN G VIS VRN VAN

VISTAN FVIaTes fVaares, (8)
The last six terms in Eq. (8) represent all possible
transition potentials. The Coulomb term, V., is

taken to be the average Coulomb potential energy

per proton and A" in a uniformly charged sphere:

6z (3 )1
vt Z N2 )7 1] o

where the Z~ %% term is the exchange contribution
and the Z ' term subtracts the interaction of the
proton with itself and A" .

By applying the variation principle, the Har-
tree-Fock equation for nucleon and delta orbitals
can be derived to use the effective Hamiltonian

within the chosen model space. Compression is

achieved by applying a static load. The radial con-
straint acts like an external force to compress or
expand the nucleus. For details see Refs. [ 35—
447,

In calculations, no-core oscillator model space
that includes 9 major oscillator shells was used. In
the 8-space (9 shells), 37 nucleon orbitals were
used: 05125 Opsns O0pras Odssos 15120 Odsses Of 70 s
1psms Ofses 1pizs Ogores lgons 1dsyss 1dsss
28150 Ohyiyes Ohgpos 1f72s 1f5m. 2pses 2P1/2
OZ1325 lgopms 2dses Oiyies lgips 3s12s 2dsss
071525 Ofuzes Lhies lhopws 2f70s 2f50s 3pass
3p1/2» Oky7, and for delta states, 10 delta orbitals
were used: Ossos 0psos 0pi2s Odsses Odsse s Odiys s
1ss5 0f7/20 Ofs2s Ofss. A total of 47 baryon or-
bitals were included.

The matrix elements of the effective Hamilto-
nian had been calculated using the Brueckner G-
matrix method™ *!, The effective N-N interaction
was the sum of the Brueckner G-matrix and the
lowest order fold diagram acting between pairs of
nucleons in a no-core model space™ >, RSC po-
tential for the N-N interaction was adopted.

The constructed effective Hamiltonian in the
many-body problem is viewed in the many-body
problem to consist of four sectors with matrix ele-
ments as follows:

(1) N-N sector: (VX)) +{(T,q(m))+(V¥).

(VN vy,
W+ Ve .
(H, (one-body) ) +

(2) N-A sector:

(3) A-N sector:
(4) A-A sector:

(T (o) (VA (V2 2T,
Nucleons to be excited to A’s from N-N sector
were allowed. The picture of the model space

which used in this study was completed.

3 Calculation Procedure and Strategy

The used strategy was the same of the earlier
in Refs. [41—44 ] and was summarized as a follo-
wing: First, consider the effective Hamiltonian in

the nucleon sector only(i. e. by turning off (N-A)
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interaction). This is followed by calculating the
ground state properties in the spherical Hartree-
Fock approximation (i. e. Hartree-Fock energy,
Eur . and the root mean square radius(sr,,,)) by ad-
justing the strength of the kinetic and potential fac-
tors in H . until agreement between spherical Har-
tree-Fock results and the experimental binding en-
ergy and experimental radius at equilibrium is ob-
tained. The adjusting parameters A, and A, are in-
troduced to adjust the matrix elements of T,; and
Vs respectively. Since the two-body matrix ele-
ments are evaluated with an oscillator energy spac-
ing hw =14 MeV, these matrix elements are then
scaled to the new oscillator basis characterized by
new value of #w’ as described by Refs. [52—54 7.
Second, the N-A and A-N interactions are activa-
ted. The adjusting parameters and ko’ for "*?Sn
nucleus in a given model space at equilibrium with
the A channel turned off are obtained in table 1.
Third, the N-A and A-N interactions are turned off
and a radial constraint, —pfr*, is utilized to includ-
ed static compression. Here, r is the one-body sca-
lar radius operator. Fourth, the N-A and A-N in-
teractions are activated and again, the radial con-
straint, —fBr", is applied and the difference in Eyy
from the third step and current step as a function

of r.m 1s Observed.

Table 1 Adjusting parameters A,, A,, and ko of effective
Hamiltonian for *?Sn for the model space of 9 oscilla-
tor shells for which the calculations were performed.
The binding energy ( point mass radius r.,,) that was

fitted was —1104 MeV (5. 63 fm) for '*2Sn

Nucleus A Az ho' /MeV

132 Sn 0.999 1. 267 5.361

The computations of this work were done by
three major steps; the outline of these steps is
presented below.

First, the relative center of mass matrix ele-
ments of the transition potentials V™ and V2N of

Refs. [34, 35] evaluated with a computer program

developed for this purpose. The output of the pro-
gram is the matrix elements in a format suitable
for the second step of the calculations. The limits
on the relative quantum numbers n, n' » ¢, ¢, s,
s, and the total isospin  are all taken up to 3. The
limit on the relative total angular momentum g is
6. The change in the orbital angular momentum,
Al, and spin, As, are 0, £2.

Second, another computer program developed
to evaluate the two body matrix elements of the
transition potentials in two-particle basis coupled
of a good total angular momentum, J, and total
isospin, 7. The two-particle basis are constructed
from a harmonic oscillator single particle states
(nucleon orbitals and A-orbitals), which are char-
acterized by the quantum numbers n, ¢, s, j, z.
The relative center of mass transition matrix ele-
ments calculated in the first step are read in, and
each matrix element undergoes a set of tests to
show whether it is required by the constructed two-
particle states. If it passes all the tests, then it is
stored with an identifying code number. These ma-
trix elements will be multiplied by the appropriate
transformation coefficients. The calculations for
these steps based on Eq. (13) in Ref. [36]. The
matrix elements are evaluated in a no-core model
space consisting of nine major oscillator shells
(i. e. 37 nucleon orbitals) , and ten A-orbitals. The
output of this program served as an input for the
third step; the constraint spherical Hartree-Fock
calculations.

Third, a spherical Hartree-Fock computer
program has been developed to perform the calcu-
lations for this phase according to Egs. (33, 34) in
Ref. [36]. An outline of the main processes in one
iteration of CSHF calculations is as following: the
information is read and stored; the number of par-
ticles, number of single particle states, number of
Hartree-Fock occupied states and their 2 values,
the 25, ¢, and n values of the harmonic oscillator
orbitals, fw, ko', and the number of iteration.

The first quantities to be calculated and stored
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are the Hartree-Fock Hamiltonian matrix elements
(B|HIB"), according to Eq. (33) in Ref. [36]. To
do that, baryon densities of value unity are read
and stored. The appropriate two-body matrix ele-
ments of the effective Hamiltonian, which were
pre-calculated and stored in stage two, are re-
trieved. The computer code is designed such that if
it encounters a two-body matrix elements in the N-
N sector, it retrieves a previous calculated G-ma-
trix elements, the kinetic energy, 1., matrix ele-
ments, and the Coulomb energy matrix elements
are scaled as mentioned before. The set of Hartree-
Fock Hamiltonian matrix elements is used to cal-
culate a second set of Hartree-Fock matrix element
(B| H |B"Y, which includes the constraint term
and is defined by

(B/H|B) =<(B|H|B> — &B|r*|B> . (10)

This second set of Hartree-Fock Hamiltonian
matrix elements is used to calculate the corre-
sponding eigenvalues and eigenvectors. The eigen-
vectors in turn are used to calculate new baryon
densities and the number of A-particles in the occu-
pied orbitals. The new baryon densities are used to
calculate the ..

Finally, the Hartree-Fock energy., Eyp, is cal-
culated according to Eq. (34) in Ref. [36]. This is
the end of the first iteration. The second iteration
starts with the baryon densities calculated in the
first iteration and proceeds as the first iteration to
calculate the described quantities. The self consist-
ent process continues until a convergent solution is

achieved.

4 Results and Discussion

In Refs. [ 33, 38, 39, 44, some selected re-
sults for **Sn demonstrating the behavior of self-
consistent single-particle spectra as a function of
compression were presented in the case of small
model space. In the present work, more detailed

132

results for "*Sn are presented in order to examine

its properties under static compression in large

model space. The N-A and A-A interaction were
employed as they were activated in a model space
consisting of nine major oscillator shells (excluding
¢>5) for nucleons and ten orbitals for A’s making
a total of 47 baryons orbitals.

The differences among the results obtained
here and those of previous studies™ %% *Jis the
size of the nucleon model space, the number of the
A orbitals included and more compression.

The performed calculations were done for
¥2Sn. The Hartree-Fock energies, Eyps versus roms
using RSC potential are displayed in Fig. 1. Fig. 1
clearly shows that there is virtually no difference in
the results with and without A’s at equilibrium. It
is seen that without the A-degree of freedom in the
system, Eyp increases steeply towards zero binding
energy under compression. As the volume of nu-
cleus decreased (based on the rms radius) by about
50% ., the binding energy will be about 462. 67
MeV, when A-excitations are included at the re-
sults obtained when nucleons are considered only.
That means, it shows about 727. 33 MeV, and
264.66 MeV of excitation energy to achieve a 50 %
volume reduction in the nucleon-only results, and

nucleons and A"’ s results, respectively.

—4F
N N+AS~
—_ —6F -~
X RN
S \
% -st x

\
E l3lsn
= —10fF (9 shells)

I§§]

_12 -

1 1 1
2 3 4 5 6

r/tm

Fig. 1 CSHF energy as a function of the point mass 7, using
RSC potential for **Sn evaluated in 9 major oscillator
shells with 10 A-orbitals. The dashed curve corre-
sponds to CSHF full calculations including the A’s
while the solid curve corresponding to CSHF with nu-

cleons only.

It is appeared from the above results, it costs

264. 66 MeV of excitation energy to reduce the vol-
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ume by 50% and the same amount of energy to re-
duce it by 24% more. This suggests that the less
dense outer part of the nucleus initially responds to
the external load more readily than the inner part.

It can be seen from Fig. 1, 741.19 MeV of ex-
citation energy to achieve a 92% volume reduction
when the A-degree of freedom included in the sys-
tem. The most of this energy go to create massive
A particles.

The differences among the results of the Har-
tree-Fock binding energy obtained here and those

L33-38-39] i the size of the nucleon

in previous studies
model space, the number of the A orbitals includ-
ed, different potentials, and more compression
here. Also it is worth mentioning that at equilibri-
um (no constraint) in **Sn, it was found mixing
between nucleon states and the A states. As the
same as in Refs. [33, 38, 397, all curves of Eur
agree near equilibrium, (r.,,= 5.63 fm). This is
implied that the results for the system at equilibri-
um don’t depend on model space. In comparison
with the results in Refs. [33, 38, 39, the current
results are consistent with the results obtained for
¥2Sn for Eyp with different model space, but the
curve of N-only is very steeply. This is due to con-
sidering the smallest model space, so the static
compression modulus is increased significantly by
reduced the nucleon model space. The current re-
sults show more compression than the previous
studies. The results show that there is a significant
reduction in the static compression modulus, for
RSC static compressions is reduced by including
the A excitations at large model space. The conse-
quence of this reduction is a softening of the nucle-
ar equation of state at larger compression.

It is shown from Fig. 1, as the static load
force increases, the compression of nucleus that
has nucleons only is less than the other nucleus has
nucleons and A’s. This result suggests that there
is considerable reduction in the compressibility
with the A-degrees of freedom are included.

One potential consequence of this result is that

it could represent a collective mechanism for “Sub-
threshold” pion production. That is, in “sub-
threshold” pion production experiments between
colliding nuclei, if the collision produce isothermal
compression, then the A’s is populated and relaxa-
tion could occur by decay of the A’ to a nucleon
and a pion.

To get an impression of the role of the A’s as
a function of compression, the number of A’ s
against r.,, radius was plotted in Fig. 2. The total

number of A’s, the number of A"’s and A’ ’s are

separately shown.

_ 0
i AFA* +A
,2 1k _ _A_”_ N 132§
) N (9 shells)
— \
‘é 8t \\ p=12pcpu]lhnum

4 -

() -

I L L
2 3 4 5 6

r_ . /tm

Fig. 2 Number of A’s as a function of r.,, for ***Sn in nine
major shells model space. The upper curve is for the
total number of A’s. The dotted curve is for the num-

ber of A™, and the dashed curve is for A",

In Fig. 2, the number of deltas increases rap-
idly as volume decreases. When the nucleus vol-
ume is reduced to about 92% of its volume at equi-
librium, the number of deltas increases to about
13% of all constituents of **Sn. It is interesting to
note in Fig. 2 that the numbers of A°’s and A"’s
are different as increaseing compression. The crea-
tion of A°’s becomes more favorable as the com-
pression continues. This is due to the number of
neutrons is greater than the number of protons.
When 17 A’s are presented, the excitation energy
values are around of 17(M-m)==5049 MeV. Thus,
on the scale of the unperturbed single-particle ener-
gies, a substantial fraction of the compressive en-
ergy is delivered, through the N-A, A-N, and A-A
interactions, to create more massive baryons in the

lowest energy configuration of the nucleus. By an-
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other way, the number of A’s can be increased to
about 17 at r.,,= 2. 46 fm which corresponding to
about 12 times of normal density.

It can be shown from Fig. 2, the number of
A’s is increased until 7,,.,= 3.1 fm. After this ra-
dius, the number of A’s becomes constant. The
number of A’ is greater than that of A" by about
50% at this radius and this difference stills con-
stant during compression. This is because conver-
ted rate from nucleon states to A states becomes
constant in this case. This is major difference from
the previous studiest® * % 4J due to large com-
pression.

In other words., Fig. 2 shows that the number
of created A’s increases sharply, when "**Sn nucle-
us is compressed to a volume of about 0. 92 of its
equilibrium size. However, at this nuclear densi-
ty., which is about of 12 times the normal density,
the percentage of nucleons converted to A is only
about 13% in "*Sn.

The results show that the total number of A’s
of about 4X10"* is presented in "**Sn in the ground
state at equilibrium (zero constraint). This is per-
haps the most notable feature in the **Sn results,

and in contrast with all previous results™® 3839 4
This strongly motivates future efforts to proceed to
heavier nuclei such as **Pb.

To compare results in Fig. 10 of Ref. [33],
Fig. 3 of Ref. [38] and Fig. 4 of Ref. [ 39 ] with
present results in Fig. 2, the number of A’s increa-
ses as the model space decreases. From Fig. 10 in
Ref. [33], the creation of A’s becomes more favor-
able as the compression continues as model space
decreases. The current results in this work show a
those in other fin-

major difference than

[35-38-391 . the number of A’s at rme= 4.4 fm

dings
increase very sharply at this radius. This behavior
may be artifacts of the small number of A-orbitals
employed, and may be due to the small gap be-
tween the n = 0 and n = 1 single particle ener-

gies. As moving to larger compression, including

the A states reduces the static compression modu-

lus, but their role in reducing the static modulus is
less dramatic than enlarging the size of the nucleon
model space. The role of A states in reducing the
static compression modulus is the largest in the
smallest space.

In terms of relativistic heavy-ion collisions,
the nucleus that can more easily penetrate when
the A degree of freedom becomes explicit is implied
by Fig. 1. Because of the limitations of the model
space, the calculations for higher densities are
more speculative. Nevertheless it can give us some
idea about how the A population can be increased
as the nucleus is compressed to higher densities ac-
cessible to relativistic heavy-ion collisions. The re-
sults shown in Figs. 1 and 2 are consistent with
the results extracted from relativistic heavy-ions
collisions 7,

The results in Fig. 2 that show the gap be-
tween number of A’ and A" increases as model
space and compression increases. It can be seen,
the increase rate of the number of A’ ’s is approxi-
mately constant when model space is increased.
The creation of A”’s becomes more favorable as
the compression continues than that of A™’s as
model space decreases. As moving to larger com-
pression, including the A states reduces the static
compression modulus, but their role in reducing
the static modulus is less dramatic than enlarging
the size of the nucleon model space. The role of A
states in reducing the static compression modulus
is the largest in the smallest model space.

Fig. 3 shows the radial density distribution for
"2Sn at equilibrium state (no constraint) at r,, =
5.63 fm. It can be seen from this figure, there ex-
ists aradial density distribution peak of delta at
equilibrium state, at » = 3. 80 fm, without com-
pression. This result is appeared during increasing
model space.

Fig. 4 displays the radial density distribution
of neutrons p,, protons p,, deltas ps, and their
sum pr as a function of the radial distance from the

center of the nucleus for **Sn at large compression
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and point mass radius 7., = 4. 58 fm in a model
space of nine major oscillator shells with A excita-
tion restricted to the ten orbitals: Ossys 0ps/zs

Ojbl/’z ’ 0d>2 ’ Od:%,/z ’ Odl,/’z ’ 153/2 ’ Of7/2 ’ Ofs/z ’

0f3/2.
24
I}ZSH
;g (9 shells)
S 16
=
(=}
> b o
g ™
2 08F P 7 ~
RN
P, (Scaled SN
0.0 m.—-—.—
0 2 4 6 8 10

r_/fm

ms

Fig. 3 Total pr, proton p, (dotted line) , neutron p, ( dashed
line), and delta p, radial density distribution for "**Sn
at equilibrium (point mass radius 7., =5. 63 fm) in a

model space of nine major oscillator shells.

24

Py

]."ZSn
T 16f (9 shells)
S L. r, =4.58fm
g S P,
2 BN
E: ---s
S 08k P
Q
Py ;
0.0 ————t—— T
2 4 6 8 10

r/fm

Fig. 4 Total pr, proton p,(dotted line) s neutron p, ( dashed
line) , and delta ps radial density distribution for '**Sn
at point mass radius r.,, = 4.58 fm in a model space of

nine major oscillator shells.

From this figure, the neutron radial density is
higher than the proton density at all values of r.
This is due to Coulomb repulsion between the pro-
tons. At equilibrium, the A-radial density distribu-
tion, under high compression (point mass 7, = 4.
58 fm) ., reaches a peak value of about 0. 01 of the
proton radial density at » = 3. 70 fm. A-mixing
with the nucleons in the 0p5 5 0ps2s 0dssss 0dy)o,
0f7/2 and Of5,, orbitals occurs which explains the
shape of the A-radial distribution presented in
Fig. 4.

Fig. 5 displays the radial density distributions
of ' Sn evaluated at an about 0. 31 reduced volume
(rime = 3.80 fm). In this case, the A-radial density
distribution reaches a peak value of about 0. 41 of

the proton radial density at r=3. 3 fm.

Pr

24 gn
ég (9 shells)
Q\; 1.6+ rrms=3'80 fm
g Py
A
= Py o Ts-l -
E. 0.8 T

Pa .
()0 L 1 ;
0 2 4 6 8 10

r/fm

Fig. 5 Total pr, proton p, (dotted line), neutronp, (dashed
line), and delta p, (dotted line) radial density distribu-
tion for '**Sn at point mass radius 7, = 3. 80 fm in a

model space of nine major oscillator shells.

Fig. 6 shows that the A-radial density distribu-
tion reaches a peak value of about 0. 96 of the pro-
ton radial density of **Sn evaluated at higher com-
pression an about 0. 08 reduced volume (r,,,=2. 46

fm).

32F Py

HZSn
(9 shells)
r_=2.46fm

rms

2.4

p /(baryons/fm?)
£
T

0.8

0.0
0
r/ fm

Fig. 6 Total pr, proton p, (dotted line), neutronp, (dashed
line), and delta p, (dotted line) radial density distribu-
tion for '**Sn at point mass radius 7., = 2. 46 fm in a

model space of nine major oscillator shells.

If one compares the results here of the radial

density distribution with the previous studi-

est? 3839441 Tt can be found the peak of delta in-
creases as the compression is increased, and also
this peak decreases as model space increases.

It can be seen from Figs. 4, 5, and 6, as com-
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pression increases the total radial density increases
and the radial density distribution of A’s increases
sharply, but radial density of nucleons decreases
sharply. If these results are substantial in further
work, they could have interesting consequences for
subthreshold pion production experiments in
nucleus-nucleus collisions where the bombarding
energy per nucleon is below that needed to produce
pions in free N-N collisions. To the extent these
collisions produce isothermal compression and re-
laxation occurs by decay of the A to nucleon and pi-
on, these calculations support a collective mecha-
nism for subthreshold pion production. To our
know- ledge this mechanism has not been previous-
ly explored.

It can be seen from Fig. 7 the total radial den-
sity for "**Sn in nine oscillator shells at large com-
pression (r,.= 3.80 fm) and at equilibrium (point
mass radius 7., = 5. 63 fm). This figure shows
when the volume of the nucleus is decreased by
0. 31 of the equilibrium volume; the radial density

increases by about 0. 1 of its value at equilibrium

case.

r =3.80fm
:\% 2 = lilsn
g Sl (9 shells)
2 S o
< ~
=
< 1+ r,=5.63fm
o Epulibrium
0 1 1 S
0 2 4 6 8 10

r/fm

Fig. 7 Total radial density distribution for '**Sn at equilibri-
5.63 fm) (dashed line) and at r.,, = 3. 80

um (rome =

fm (solid line).

The results for the matter distribution of **Sn
ground state are shown in Fig. 7. For the nucleon
distribution, they are difference with the calcula-
tion of Fig. 11 in Ref. [33] that is due to different
model space.

Clearly, the density in the interior rises rela-

tive to the interior density at equilibrium as one

compresses the nucleus. This is in contrast to the
behavior of the radial density on the outer-surface,
where the radial density distribution is higher at
equilibrium than the radial density when the static
load is applied.

In Fig. 8, the lowest self-consistent zero-
change single particle energy levels as a function of
ras were displayed. The orbits is curved up as the
load on the nucleus increase. This is because the
kinetic energy of the baryons which is positive
quantity becomes more influential than the attrac-
tive mean field of the baryons. The present results
is like results of Fig. 1 of Ref. [ 38] with same mod-

el space and large compression here.

i 132 —=—0s *”*Op
Sn 12 32
240 e R
(9 shells) 0p,, 0d,,
—e= s, ——0d,
z 10 = =0, o lpy,
——0f, ——1p
‘\* 52 12
= 80 %"“\%jjié%
| N

4

y T
or \:fk*e\\w%:&
\%“\”%j\x\%izm:g

—80k . ’\%~%g:&| —
2 3 4 5 6
r_/fm

ms

Fig. 8 Single particle energy of the lowest ten neutron states

for '**Sn in nine-oscillator shells as a function of .

The single particle energy spectrum also ex-
hibits the gaps between the shells. As the nucleus
is compressed, the single particle level ordering
and the gaps are preserved. The general trend ex-
hibites the single particle energies (except the dee-
pest bound orbital which actually drops with com-
pression) shift to higher energies as the nucleus is
compressed. The curvature goes up more and more
as the orbital becomes closer to the surface. This
implies that the surface is more responsive to com-
pression than the interior of nucleus.

Recall that single particle spectrum is genera-
ted entirely from the underlying microscopic Ham-
iltonian. Thus, it is a remarkable result of these
calculations that the calculated spectrum follows
the expected ordering of the phenomenological

shell model in the dominantly nucleons orbitals,
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and the spectrum exhibits clearly visible gaps be-
tween the shells. As the nucleus is compressed,
the single particle level ordering and the gaps are
preserved. It is also worth noting that the orbitals
closest to zero single-particle energy are more sen-
sitive to compression that means there is more re-
sponsive of compression than the interior of nucle-
us. The general trend of single-particle energies
exhibites to shift to higher energies as the nucleus
is compressed.

The behavior of single particle energy levels is
in good agreement with the orbital ordering of the
standard shell model. The gap is very clear be-
tween the shells. The splitting of the levels in each
shell is an indicator that L-S coupling is strong
enough in RSC potential, i. e., L-S coupling be-
come stronger as the static load on the nucleus in-
creases. As the nucleus is compressed, the split-
ting of the orbitals becomes more clear especially

in delta orbitals.
5 Conclusions

The ground state properties of '**Sn has been
investigated with the A-degrees of freedom includ-
ed, using a realistic effective baryon-baryon Ham-
iltonian within the radial constrained Hartree-Fock
approximation with large model space. More nu-
clear binding energy is found with A’ s included,
and about 4X10 ' of one A is found in the ground
state (equilibrium) of ¥?Sn. The single particle en-
ergy levels of the system are evaluated and their
behavior under compression is studied. The results
for single particle energies at the equilibrium are in
agreement with those of the traditional phenome-
nological shell model.

It can be conclude that the Hartree-Fock ener-
gy calculated with a much larger compression de-
creases as the size of the model space increases for
either the N-only or the case including both N and
A. The A excitation of the nucleon is gradually
populated as the nucleus is compressed. The nucle-

us becomes more compressibility when delta parti-

cle resonances occur. A more modern potential and
the inclusion of A resonances together induce a sig-
nificant softening of the nuclear equation of state
for large amplitude compression.

There is considerable reduction of the zero
temperature compressibility when the A degree of
freedom is activated.

Finally, a large fraction of the excitation ener-
gy requires to compress the nucleus used to create
mass in the form of A’s. This may have implica-
tions for subthreshold pion production in nucleus-

nucleus collisions.
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