Article ID: 1007-4627(2009)Suppl. -0059-05

Shell-model Study of Neutron-rich Λ -hypernucleus ${}^{10}_{\Lambda}$ Li

A. Umeya, T. Harada

(Research Center for Physics and Mathematics, Osaka Electro-Communication University, Neyagawa, Osaka, 572-8530, Japan)

Abstract: We investigate a Σ -mixing probability of a neutron-rich Λ -hypernucleus $^{10}_{\Lambda}$ Li by using microscopic shell-model calculations considering a Λ - Σ coupling in the first order perturbation. The theoretical Σ -mixing probability in $^{10}_{\Lambda}$ Li is found to be about 0.48%, due to the appearance of multi-configuration Σ Nuclear excited states which can be strongly coupled with the Λ ground state in $^{10}_{\Lambda}$ Li.

Key words: hypernuclei; neutron-rich; shell model CLC number: O572.33 Document code: A

1 Introduction

One of the most important subjects in strange nuclear physics is a study of neutron-rich Λ -hypernuclei^[1]. It is expected that a Λ hyperon has a glue-like role in nuclei beyond the neutron-drip line, together with an additional attraction of a three-body Λ NN force caused by a strong Λ N- Σ N coupling^[2,3], which might induce a Σ -mixing in nuclei. The knowledge of behavior of hyperons in a neutron-excess environment affects significantly our understanding of neutron stars, because it makes the Equation of State(EOS) soften^[4]. The purpose of our study is to clarify theoretically the structure of the neutron-rich Λ -hypernuclei by a nuclear shell model, which can succeed a description of the neutron-excess nuclei.

Recently, Saha and his collaborators have performed the first successful measurement of a neutron-rich Λ -hypernucleus $^{10}_{\Lambda}$ Li by the double-charge exchange reaction (π^- , K^+) on a 10 B target [5]. However, the magnitude and incident-momentum dependence of the experimental production cross

sections cannot be reproduced by a theoretical calculation by Tretyakova and Lanskoy^[6], who predicted that the cross section for ${}^{10}_{\Lambda}$ Li is mainly explained by a two-step process, $\pi^-p \rightarrow K^0 \Lambda$ followed by $K^0p \rightarrow K^+$ n, or $\pi^-p \rightarrow \pi^0$ n followed by $\pi^0p \rightarrow K^+\Lambda$ with the distorted-wave impulse approximation, rather than by a one-step process, $\pi^-p \rightarrow K^+\Sigma^-$ via Σ^-p doorways due to the $\Sigma^-p \leftrightarrow \Lambda N$ coupling. This problem might suggest the importance of Σ -mixing in the Λ -hypernucleus. We have shown that the analysis of the (π^-, K^+) reaction provides to examine precisely a wave function involving the Σ -mixing in ${}^{10}_{\Lambda}$ Li, as well as a mechanism of this reaction^[7].

In this paper, we investigate the Σ -mixing probability of the neutron-rich hypernucleus $^{10}_{\Lambda} \text{Li}$, in microscopic shell-model calculations considering the Λ - Σ coupling effect. We find that the Σ -mixing probability is about 0.48%, due to the appearance of multi-configuration Σ Nuclear excited states which can be strongly coupled with the Λ ground state in $^{10}_{\Lambda} \text{Li}$.

^{*} Received date: 16 Sep. 2008

^{*} Foundation item: Grant-in-Aid for Scientific Research on Priority Areas(17070002, 20028010)

Biography: A. Umeya(1977—), male(Japanese Nationality), Doctor, working on the field of nuclear physics;

E-mail: u-atusi@isc.osakac.ac.jp

2 Formalism

We consider a Λ Nuclear state involving a Σ -mixing in a Λ -hypernucleus ${}_{\Lambda}^{A}Z$ in a microscopic nuclear shell model. The state of the Λ -hypernucleus is represented by $|({}_{\Lambda}^{A}Z)\,\nu TT_{z}JM\rangle$, where A is the mass number, T and J are the isospin and the angular momentum, respectively, and T_{z} and M are their z-components. The atomic number denotes $Z=A/2+T_{z}$; the index ν is introduced to distinguish states with the same T and J.

In the configuration space for the Λ -hypernucleus involving a Λ - Σ coupling, the Hamiltonian is given as

$$H = H_{\Lambda} + H_{\Sigma} + V_{\Lambda\Sigma} + V_{\Sigma\Lambda}, \qquad (1)$$

where H_{Λ} is the Hamiltonian in the Λ configuration space, H_{Σ} is that in the Σ configuration space, and $V_{\Lambda\Sigma}$ and its Hermitian conjugate $V_{\Sigma\Lambda}$ denote the two-body Λ - Σ coupling interaction, $\Lambda N \leftrightarrow \Sigma N$. Then, we can write the Λ Nuclear state as

$$|\langle {}^{\Lambda}_{\Lambda}Z\rangle_{\nu}TJ\rangle =$$

$$\sum_{\mu} C_{\nu,\,\mu} |\psi^{\Lambda}_{\mu},\,TJ\rangle + \sum_{\mu'} D_{\nu,\,\mu'} |\psi^{\Sigma}_{\mu'},\,TJ\rangle ,$$
(2)

where $|\psi_{\mu}^{\Lambda}, TJ\rangle$ and $|\psi_{\mu}^{\Sigma}, TJ\rangle$ are eigenstates for the Λ configuration and the Σ configuration, respectively, which are given by

$$H_{\Lambda} \mid \psi_{n}^{\Lambda}; TJ \rangle = E_{n}^{\Lambda} \mid \psi_{n}^{\Lambda}; TJ \rangle , \qquad (3)$$

$$H_{\Sigma} \mid \psi_{n'}^{\Sigma}; TJ \rangle = E_{n'}^{\Sigma} \mid \psi_{n'}^{\Sigma}; TJ \rangle.$$
 (4)

Although the coefficients $C_{\nu,\;\mu}$ and $D_{\nu,\;\mu'}$ are determined by diagonalization of the full Hamiltonian H, we treat $V_{\Lambda\Sigma}$ and $V_{\Sigma\Lambda}$ as perturbation because a Σ hyperon has about 80 MeV higher mass than a Λ hyperon. When taking into account up to the first-order terms, the coefficients can be written as

$$C_{\nu, \mu} = \delta_{\nu\mu},$$

$$D_{\nu, \mu'} = -\frac{\langle \psi_{\nu}^{\Lambda}, TJ \mid V_{\Lambda\Sigma} \mid \psi_{\mu'}^{\Sigma}, TJ \rangle}{E_{\mu'}^{\Sigma} - E_{\nu}^{\Lambda}}.$$
(6)

Then, the Σ -mixing probability in the Λ -nuclear state $|({}^A_{\Lambda}Z)_{\nu}TJ\rangle$ is given as

$$P_{\Sigma} = \sum_{\mu'} P_{\Sigma, \, \mu'} \,, \tag{7}$$

where

$$P_{\Sigma, \mu'} = \mid D_{\nu, \mu'} \mid^2$$
 (8)

is a $\Lambda\text{-}\Sigma$ coupling strength for each Σ eigenstate $|\,\psi_{\boldsymbol{\mu}'}^{\Sigma}\,,TJ\,\rangle\,.$

It has been well-known that a Λ hyperon in a Λ -hypernucleus is described by the single-particle picture very well because a ΛN interaction is weak. On the other hand, in terms of a Σ hyperon, the nuclear configuration would change due to the strong spin-isospin dependence in a ΣN interaction. In order to evaluate the single-particle picture for a hyperon, we consider a spectroscopic factor for a hyperon-pickup reaction from $|\psi_{\mu}^{Y}, TJ\rangle$,

$$S_{\mu}(\nu_{N}T_{N}J_{N},j_{Y}) = \frac{|\langle \psi_{\mu}^{Y}, TJ \parallel a_{j_{Y}}^{\dagger} \parallel (^{A-1}Z)\nu_{N} T_{N} J_{N} \rangle \mid^{2}}{(2T+1)(2I+1)}, (9)$$

where $|(^{A-1}Z)\nu_{\rm N}T_{\rm N}J_{\rm N}\rangle$ is a state of a core nucleus and $a_{j_{\rm Y}}^{\dagger}$ is a creation operator of a single-particle state of the hyperon with an angular momentum $j_{\rm Y}$. The matrix element $\langle \bullet \parallel \bullet \parallel \bullet \rangle$ is reduced with respect to both isospin and angular momentum. The spectroscopic factor satisfies the sum rule

$$\sum_{\nu_{\rm N} T_{\rm N} J_{\rm N}} S_{\mu}(\nu_{\rm N} T_{\rm N} J_{\rm N}, j_{\rm Y}) = n_{j_{\rm Y}}, \qquad (10)$$

where n_{j_Y} is the number of the hyperon in the orbit j_Y . If a hyperon in the hypernucleus provides the single-particle nature, the state $|\psi_\mu^Y, TJ\rangle$ is represented as a tensor product of a nuclear core state $|(^{A-1}Z)\nu_c T_c J_c\rangle$ and a hyperon state $|j_Y\rangle$; we obtain $S_\mu(\nu_N T_N J_N, j_Y) = \delta_{\nu_N \nu_c}$, where $\nu_N = \nu_c$ means the core state is equivalent to the ^{A-1}Z state with the weak coupling limit.

In the present shell-model calculations, we construct wave functions of ${}^{A}_{\Lambda}Z$ as follows. Four nucleons are inert in the 4 He core and (A—5) valence nucleons move in the p-shell orbits. The Λ or Σ hyperon is assumed to be in the lowest $0s_{1/2}$ orbit. For the NN effective interaction, we adopt

the Cohen-Kurath (8—16) 2BME^[8], which is a traditional and empirical interaction for ordinary *p*-shell nuclei, and is one of reliable effective interactions for stable and semi-stable nuclei. The YN effective interaction is written as

$$V_{Y} = V_{0}(r) + V_{\sigma}(r) \mathbf{s}_{N} \cdot \mathbf{s}_{Y} + V_{LS}(r) \ t \cdot (\mathbf{s}_{N} + \mathbf{s}_{Y}) + V_{ALS}(r) t \cdot (\mathbf{s}_{N} + \mathbf{s}_{Y}) + V_{T}(r) S_{12},$$

$$(11)$$

where V(r)'s are radial functions of the relative coordinate $r = |\mathbf{r}_{\mathrm{N}} - \mathbf{r}_{\mathrm{Y}}|$ between the nucleon and the hyperon. \mathbf{s}_{N} and \mathbf{s}_{Y} are spin operators for the nucleon and the hyperon, respectively, and ℓ is the angular momentum operator of the relative motion. The tensor operator S_{12} is defined by

$$S_{12}=3(\hat{\boldsymbol{r}}\boldsymbol{\cdot}\boldsymbol{\sigma}_{\mathrm{N}})(\hat{\boldsymbol{r}}\boldsymbol{\cdot}\boldsymbol{\sigma}_{\mathrm{Y}})-(\boldsymbol{\sigma}_{\mathrm{N}}\boldsymbol{\cdot}\boldsymbol{\sigma}_{\mathrm{Y}})$$
 (12) with $\boldsymbol{\sigma}=2\boldsymbol{s}$ and $\hat{\boldsymbol{r}}=(\boldsymbol{r}_{\mathrm{N}}-\boldsymbol{r}_{\mathrm{Y}})/r$. In Table 1, we list the parameters of radial integrals V , Δ , S_{+} , S_{-} and T , which correspond to V_{0} , $V_{\mathrm{\sigma}}$, V_{LS} , V_{ALS} and V_{T} , respectively. We adopt the values of the Δ N interaction V_{Δ} and the Δ - Σ coupling interaction $V_{\Delta\Sigma}$ and $V_{\Sigma\Delta}$ which are given in Ref. [9], and the Σ N interaction V_{Σ} given in Ref. [10].

Table 1 Radial integrals for a YN effective interaction in unit of MeV. The values are listed in Ref. [9] for the ΛN interaction and the $\Lambda - \Sigma$ coupling interaction, and Ref. [10] for the ΣN interaction

	Isospin	\overline{V}	Δ	S_{+}	S_{-}	T
V_{Λ}	T = 1/2	-1.2200	0.430 0	-0.202 5	0.187 5	0.030 0
${V}_{\Sigma}$	T=1/2	-3.160 O	-2.3300	-0.0790	-0.0100	-0.483 O
${V}_{\Sigma}$	T = 3/2	-2.040 0	4.960 0	-0. 167 0	0.0180	0.226 0
${V}_{\Lambda\Sigma}$, ${V}_{\Sigma\Lambda}$	T=1/2	1.450 0	3.040 0	-0.0850	0.0000	0.157 0

3 Results and Discussion

We calculate the states with T=3/2 and $J^{\pi}=$ 1^- of the neutron-rich Λ -hypernucleus $^{10}_{\Lambda}$ Li, including the ground and excited states. We assume that the difference between Λ and Σ threshold energies is $E({}^{9}\text{Li}_{gs} + \Sigma) - E({}^{9}\text{Li}_{gs} + \Lambda) = 80 \text{ MeV}.$ The dimension of the Hamiltonian matrix elements is 47 (12 Λ Nuclear states and 35 Σ Nuclear states). The calculated spectrum of Λ eigenstates $|\psi_{\mu}^{\Lambda}, \mathrm{TJ}\rangle$ is shown in the left panel of Fig. 1. Here, we set the energy of the ground state to 0 MeV. This spectrum is very similar to the spectrum of 9 Li with T=3/2 and $J^\pi=1/2^-$, $3/2^-$, which is shown in the second panel from the left in Fig. 1. The gaps between the energy levels of $^{10}_{\Lambda}$ Li slightly change from those of ⁹Li because the ΛN interaction is weak. We confirm that the 9Li core state is hardly changed by the addition of the Λ hyperon, and that the Λ hyperon behaves as the single-particle motion in the nucleus[10]. The results are also supported by the Λ -pickup spectroscopic factors.

In Fig. 1, we also show the spectroscopic factors S_{Λ} for the Λ ground and two excited states; (a) $(T,J^{\pi})=(3/2,\ 1^{-})_{\rm gs}$ at 0.0 MeV, (b) $(3/2,\ 1^{-})_{\rm 5}$ at 9.5 MeV, and (c) $(3/2,\ 1^{-})_{\rm 10}$ at 16.0 MeV. In the case (a), we obtain $S_{\Lambda}\approx 1$ for the ground

Fig. 1 Calculated energy spectra for Λ eigenstates of ¹⁰_Λ Li and eigenstates of ⁹Li. Λ-pickup spectroscopic factors for three eigenstates, labelled by (a), (b) and (c) in each panel.

state of 9 Li and $S_{\Lambda} \approx 0$ for other eigenstates. Similarly, in the case (b), $S_{\Lambda} \approx 1$ for the corresponding eigenstate. In the case (c), S_{Λ} has a large value for

the two eigenstates, because these states are close each other in the levels.

In Fig. 2 we display that the calculated spectra of Σ eigenstates in 10 Li and eigenstates in 9 Be with T=1/2, 3/2, 5/2 and $J^{\pi}=1/2^{-}$, $3/2^{-}$, together with the Σ -pickup spectroscopic factors $S_{\Sigma^{-}}$ for three states; (a) $(3/2, 1^{-})_{gs}$ at 0.0 MeV, (b) $(3/2, 1^{-})_{10}$ at 17.3 MeV, and (c) $(3/2, 1^{-})_{20}$ at 24.7 MeV, where the energy of the Σ ground state $|\psi_{gs}^{\Sigma}\rangle$ is 58.4 MeV higher than that of the Λ ground state $|\psi_{gs}^{\Lambda}\rangle$. The distributions of $S_{\Sigma^{-}}$ for excited states, (b) and (c), spread widely with the multiconfiguration of 9 Be * , as seen in Fig. 2. This implies that the Σ hyperon has the ability of changing the nuclear configuration largely.

Fig. 2 Calculated energy spectra for Σ eigenstates of ${}^{10}_{\Lambda}$ Li and eigenstates of ${}^{9}_{}$ Be. Σ^{-} -pickup spectroscopic factors for three eigenstates, labelled by (a), (b) and (c) in each panel.

We find that the theoretical Σ -mixing probability P_{Σ} in the ground state of $_{\Lambda}^{10}$ Li, which is calculated by the first-order perturbation, is 0.48%. The Λ - Σ coupling strengths $P_{\Sigma,\,\mu'}$ of the Σ eigenstates, in the ground state of $_{\Lambda}^{10}$ Li are shown in Fig. 3. A contribution of the ground state $|\psi_{\rm gs}^{\Sigma}\rangle$ ($E_{\rm gs}^{\Sigma}-E_{\rm gs}^{\Lambda}=58.4$) to the Σ -mixing of the ground state of $_{\Lambda}^{10}$ Li is reduced $P_{\Sigma,\rm gs}=0.001\%$, whereas the several Σ excited states in the $E_{\mu}^{\Sigma}-E_{\rm gs}^{\Lambda}=65-70$ MeV region considerably contribute to the Σ -mixing. Those contributions are enhanced by the configuration mixing due to the Σ N interaction V_{Σ} .

We used the values of \overline{V} in the ΣN effective in-

teraction, $\overline{V}_{\Sigma}(T=1/2)=-3$. 16 and $\overline{V}_{\Sigma}(T=3/2)=-2$. 04 MeV in Table 1, which mean the ΣN interaction is attractive. Since recent studies suggest that the ΣN interaction may be repulsive [11·12], we demonstrate the Σ -mixing probability P_{Σ} as a function of the energy difference, $E_{\rm gs}^{\Sigma}-E_{\rm gs}^{\Lambda}$, between the Λ and Σ ground states. As shown in Fig. 4, we find the probability is 0.2%—0.35%, if the ΣN interaction is more repulsive than that used in the present calculation and the energy difference $E_{\rm gs}^{\Sigma}-E_{\rm gs}^{\Lambda}=70$ —90 MeV.

Fig. 3 Λ-Σ coupling strengths $P_{\Sigma, \mu'}$ of the Σ eigenstates in the ground state of ${}^{10}_{\Lambda}$ Li.

Fig. 4 The Σ -mixing probability P_{Σ} in the ground state of ${}^{10}_{\Lambda} \text{Li.}$ P_{Σ} is a function of the energy difference, $E_{\text{gs}}^{\Sigma} - E_{\text{gs}}^{\Lambda}$, between the Λ and Σ ground states.

4 Conclusion

The purpose of the present study has been to investigate the Σ -mixing probabilities of the neutron-rich $^{10}_{\Lambda}$ Li hypernucleus, in shell-model calculations considering the Λ - Σ coupling in the first-order perturbation. The present shell-model calculations have shown that the addition of the Σ hyperon changes the nuclear configuration mixing largely while the addition of the Λ hyperon does not change that. We have found that the Σ -mixing probability is about 0.48%, due to the appearance

of multi-configuration Σ excited states which can be strongly coupled with the Λ ground state in $^{10}_{\Lambda}$ Li.

For distribution of the Λ - Σ coupling strengths, a detailed discussion of the $\Lambda N \leftrightarrow \Sigma N$ interaction is necessary. The analysis of the $\Lambda N \leftrightarrow \Sigma N$ interaction will be published elsewhere, together with further numerical analysis of neutron-rich nuclei with/without a hyperon.

References:

- [1] Majling L. Eur Phys J, 2007, A33: 61.
- [2] Khin Swe Myint, Harada T, Shinmura S, et al. Few-Body Syst, 2000, 12 (Suppl): 383.

- [3] Akaishi Y, Harada T, Shinmura S, et al. Phys Rev Lett, 2000, 84: 3 539.
- [4] Baldo M, Burgio G F, Schulze H J. Phys Rev, 2000, C61: 055 801.
- [5] Saha P K, Fukuda T, Imoto W, et al. Phys Rev Lett, 2005, 94: 052 502.
- [6] Tretyakova T Yu, Lanskoy D E. Phys At Nucl, 2003, 66: 1 651.
- [7] Harada T, Umeya A, Hirabayashi Y. Submitted for publication.
- [8] Cohen S, Kurath D. Nucl Phys, 1965, 73: 1.
- [9] Millener D J. Springer Lecture Notes in Physics, 2007, 724: 31.
- [10] Dover CB, Millener DJ, Gal A. Phys Rep, 1989, 184: 1.
- [11] Noumi H, Saha P K, Abe D, et al. Phys Rev Lett, 2002, 89: 072 301.
- [12] Friedman E, Gal A. Phys Rep, 2007, 452: 89.