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Efimov States in Three-body Systems’
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Abstract; We studied the Efimov effect in a three-body system by solving the Faddeev equations.

Different models and interactions were considered. The occurrence of Efimov states was discussed.

The possible Efimov state was clearly presented and its properties were investigated.
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1 Introduction

The Efimov effect’”) was first theoretically
pointed out by Efimov that a number of weakly
bound states arise in quantum three-body system
when at least two of the binary subsystems have
extremely large scattering length or bound states at
nearly zero energy. Much effort have been made in
finding and explaining these exotic bound excited
states since then. Three-body models, solved by

Faddeev calculation™: !

variational method™ *1,
and so on, have been successfully applied to study
this effect. Evidence for Efimov quantum states in
an ultracold gas of caesium atoms was firstly repor-
ted in 2006, In nuclear physics, the weakly
bound halo nuclei which can be described by a

coretn+n
9]

model may have this kind of

states™ 7 The variational method has been suc-

cessfully used to calculate the ground-state ener-

gies of quantum three-body system! *, but we

* Received date: 17 Jun. 2008; Revised date: 18 Aug. 2008
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know that this method does not apply to the calcu-
lation of the excited states. And due to the uncer-
tainty of the interactions, the studies still have
strong model dependence and the investigation of
the universal aspect of this problem is in need. In
this work we search for the Efimov states in
three-body system by solving the Faddeev equa-
tions. Different models and interactions are consid-
ered in our study. We try to give some unified
analysis of the properties by comparing ours with

the previous results.

2 Method

We consider a system with three particles
which are denoted as 1, 2 and 3. 2 and 3 are identi-
cal. Particle masses are m,m, m,m, m,m, respec-
tively. m is nucleon mass. m,, m, are integers.
Two methods for solving this three-body system
are involved in this work. One is the variational

method™!
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where ;s r, and r; are the distances of 1-2, 1-3,
and 2-3. ®(R) is a s-state trial wave function™” for
three-body systems. 7 is a scaling parameter.

Another method for solving the Faddeev equa-

tions is
3
0=(T—E)¥+ > V¥, (i=1, 2, 3)
=1
W:W1+W2+W3 . (2)

The hyperspherical expansion can be efficiently

used in the three-body problem with short-range

[11]

interactions''”’. The Hyperspherical decomposition

of the wave function is used

v = zzxf's"”,l(p)go“ (0%
.0, K;
{I:(Y[“_ (I,‘ )@Y{ﬁ (y1 ) )1‘1 ®
(X.\/ @)XA )s“ :Ij’ ®X,\( }j!\/l ’ (3)
with the abbreviation Q,={(l,,l,)L,(s;+5.)S.i}
Xjis and
¢ (0 =N """ (sing)' (cosd)'s X

K;

platye e (cos(20,)) .

(K [’[)7

Here (p, 0;) are the hyperspherical coordinates

(hyper-radius p:m and hyper-angle ;=
arctan (x;/y;)). (x;,» ;) are the corresponding
Jacobi coordinates. For a given Jacobi set (x;, y;),
we define the associate orbital angular momenta
(l,+l,), the spins of the three particles s, s;, 55
the total angular momentum J and its projection

M. The indexes i, j, k run through (1, 2, 3) in

. Leit1/27 04172 - . .
circular order. P """ """ is the Jacobi polynomi-
ity

L.l ., . . P .
al. Nk” * {s a normalization coefficient and K, is the

i

hyper-angular-momentum. Using this expansion in
the Faddeev equations, one can convert the
two-dimensional partial differential equations (2)

into a set of coupled one-dimensional equations

(K; Jr?)/Z)(K +5/2) LS.
_ E i
[dp + (0 :|X, K0 (IO)+

2 Vi, ax @y (=0, 4

jaK

where

Viik . ax (0 =1{¢p" ”<<9>|V,J\ @0 .

The lLaguerre polynomial expansion is used to

solve these coupled equations .

3 Numerical Results and Discussions

At first, we assume that the three particles

are spinless and take the two-body interactions as

the s-wave potentials with Yukawa form"*
V(ry)=(—s)147.585(1/m,)b *X
b rs
—2.11 ;) .
: ( 967
Ulr, )= (—s) ™M1 47 58552
2mym,
b. 1,2
exp(—2.1196—) : 5)
1,2 b.

where s(s.) and b(b.) are parameters of the poten-
tial well depth and the force range. respectively.
When s(s.)<(1, the scattering length is negative
and there is no bound state for the two-body sub-

I, The Faddeev equations are numerically

systems:
solved to obtain the three-body binding properties.
Considering the accuracy of our calculation, we
show the convergence of ground-state energy in the

hyperspherical expansion(see Fig. 1).
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Fig. 1 Convergence of ground-state energy in Faddeev calcu-
lation; the three-body energy as a function of the trun-
cated hyper-angular-momentum K. The hyper-radial
wavefunction is expanded by 50 Laguerre polynomials.
The hyper-radius p is calculated up to 600 fm. Yukawa
potential parameters are taken as s=s.=1.0 MeV,

b=0b, = 5.0 fm. m; =m, =1 are used as particle mass.
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According to the results shown in Fig. 1, we
use K., =32 as a typical truncation in the follow-
ing calculation in order to obtain correct binding
energies. In Table. 1 we list the results for a series
of three-body systems and compare them with
those in Ref. [2]. As we can see, the ground and
excited state energies calculated by Faddeev equa-
tions are lower than those calculated by the varia-
tional method. It’s obvious that the Faddeev cal-
culation is more precise if the convergence of the
binding energies is ensured. Both the Faddeev and
the variational calculation™ give no bound excited
state for the systems with three identical particles
or with two light particles and a heavy particle if

there is no bound state for two-body subsystems.

Table 1

We also try to search for the bound excited states
for these systems by changing the mass ratio of
particles but we do not find them. The bound ex-
cited states arise when we increase the potential
strength s. to a critical value(see row 2 and 4)
which leads to a weakly bound state for the
two-body subsystems. The Borromean CNN(Core-
Nucleon-Nucleon) systems are not the candidates
for searching Efimov states according to these re-
sults. For the systems with two heavy particles
and a light particle, the results of both methods
agree with the fact that such systems may have
bound excited states although there is no bound
subsystem. These bound excited states were dis-

cussed by Ren as Efimov states'*'.

Numerical results for three-body systems with Yukawa potentials(b =b. = 5.0 fm). E, and E, are

energies of the ground states and the first excited states, respectively. ‘Faddeev’ denotes the

result of this work. ‘Ren’ is taken from Ref. [2].

Faddeev Ren
m ms Se
E,/MeV E,/MeV E,/MeV E,/MeV

1 1 1. 00 —1.25 >0 —1.23 =0

1 1 1. 20 —3.05 —0.79X10"?
1000 1 1. 00 —1.00 >0 —0.99 >0
1000 1 1.31 —2.86 —0.60X107?

1 100 1. 00 —1.34 —0.15 —1.28 >0

1 1000 1. 00 —1.83 —0.31 —1.78 —2.01X10°?

1 10000 1. 00 —2.08 —0.54 —2.06 —5.32X10"?

1 100000 1. 00 —2.18 —0.75 —2.17 —7.08X10?

According to the above calculation, one can
search for Efimov states in the weakly bound
three-body systems with two heavy particles and a
light particle. In nuclear physics, one can hardly
find this kind of systems. The three-body systems
with two light particles and a heavy particle are the
candidates if there are bound for core-n subsys-
tems. In Fig. 2 we show the results for a series of
CNN systems with m, =1, m; =1—40. The poten-
tial strength s, is limited to the values which just
allow the first excited state to arise in each group
of calculation. s=0.949 MeV, 6=2.06 fm are

used to reproduce the low energy properties of NN

interaction'. It is interesting to find that the
core-n binding energy is nearly parameter-inde-
pendent at this threshold. So we can approximately
select the candidates in nuclear three-body systems
on condition that the core-n subsystem should have
a binding s state below about 0.45 MeV. Accord-
ing to the table given in Ref. [12], one can find
that very few nuclei satisfy the condition shown in
Fig. 2 if we only consider the ground states(the
weakly bound properties which satisfy the Efimov
condition may exist in the excited states of both

stable and unstable nuclei). We can list a few nu-

clei such as ' ""Be, *C. There are low-lying 1/2"
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states which may exist in the core-n subsystems of
these neutron rich nuclei. Many other works also
selected out these nuclei®™ by different methods.

Among the candidate nuclei, *C attracts the most

attention® ¥ 18
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Fig. 2 Ground-state energies of the two-body systems(B;)
and the first excited state energies of the three-body
systems(E,) as functions of core mass(m;). s=0. 949
MeV, b=2.06 fm are used to reproduce the low energy
properties of neutron-neutron interaction. s., b. are se-
lected to confirm that there are first bound excited
states with minimal binding energy below about 0. 01
MeV for the three-body systems. For B,, the three

lines can not be distinguished from each other.

Then we take more realistic calculation for
three-body system with m, =18, m,=1. The spin
1/2 is considered for the two light particles. We

use the spin-dependent Woods-Saxon potential

o S +S l .5 e(rmfr‘e)/a
1+e(r“f rJ)/a

\% e
" Yar e (I4eme /ey

(6)

where n denotes the light particle and ¢ denotes the
heavy core particle. The interaction between the
two light particles is used in the form™™ V,,
=(—31 MeV)exp[ —r% /(1.8 fm)?], which re-
produces the measured low energy s-state neu-
tron-neutron scattering length and effective range.
The core spin is taken as zero. The core-n relative
orbital angular momentum is calculated up to 2.
The results are shown in Fig. 3.

From the calculation we have (p*) =732 fm” at
E,=-0.1 MeV. The spatial extension of matter is

far away from the potential range. It is no doubt

that this bound excited state is an Efimov state. It
is also confirmed in this calculation that there is no
Efimov state when the core-n subsystem is un-
bound. Our result is consistent with those in Ref.
[7], in which different method and interactions are

used to solve the Faddeev equations.
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Fig. 3 The first bound excited energy E, and the core-n bind-
ing energy B, as a function of potential strength
S(absolute value). The inset includes the three-body
ground-state energy E,. All the calculations are done

for r.= 2.80 fm, a=0.6 fm, S, =—10.0 MeV.

4 Summary

In this paper we have studied the Efimov
effect in quantum three-body systems. Firstly we
conclude from the variational and Faddeev calcula-
tion that the Efimov effect may exist in the weakly
bound three-body systems with two heavy particles
and a light particle. Then the condition of occur-
rence of Efimov state in three-body systems with
bound subsystems is investigated. Finally the Efi-
mov state is clearly presented by realistic
three-body calculation. More conditions, such as
Coulomb interaction and finite core spin, should al-
so be considered for further study. Since the
long-range repulsive interactions hinder the Efimov
effect’™, and the possible candidates mostly have
spin-zero core, we only studied the three-body sys-
tems with spin-zero core and short-range interac-
tions. According to our results and the previous
works™ >, the Efimov effect, as a critical phe-

nomenon, may exist in three-body systems with

short-range interactions. This conclusion is inde-
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