文章编号: 1007-4627(2008)02-0117-06

轻核区双中子滴线核的研究

圣宗强¹,郭建友²

(1 安徽理工大学数理系,安徽 淮南 232001;2 安徽大学物理与材料科学学院,安徽 合肥 230039)

摘 要:运用形变相对论平均场(RMF)理论系统地研究了轻核区的元素 O, Ne, Mg, Si, S, Ar 和 Ca 及 Ni。计算了这 8 个元素的偶-偶核基态的一些性质,如结合能、四极形变、平均每核子结合能 以及双中子分离能等。计算中采用了 NL3 参数组,并用 BCS 方法处理对关联。限于篇幅,文中只 给出 O 和 Mg 元素的计算结果。RMF 理论计算的结果和实验值基本一致。从双中子分离能的分析 可知, RMF 理论计算的各元素的双中子滴线核分别为 ³⁰ O, ³⁸ Ne, ⁴² Mg, ⁵² Si, ⁵⁴ S, ⁶⁰ Ar, ⁸⁰ Ca 和 ⁹⁸ Ni。最后简单讨论了 Ca 和 Ni 同位素中的中子幻数情况。

关 键 词:相对论平均场; 滴线核; 双中子分离能 中图分类号: O571.2; O571.21 **文献标识码**: A

1 引言

近年来在放射性核束装置上实验的新进展开了 核物理研究的崭新领域,在这些研究中发现了许多 新的物理现象。例如,(1)某些轻核中存在的中子 晕(¹¹Li, ¹¹Be, ¹⁴Be 和 ¹⁷B 等); (2) 双满壳奇异核 (¹⁰He, ⁷⁸Ni 和 ¹⁰⁰Sn 等); (3) 超重元素(Z=110, 111, 112, 113 和 115)。这些发现引起了国内外核 物理学家的高度重视,如何解释和理解这些新的物 理现象是对核理论的挑战,对这些现象的研究也是 当前核物理研究的国际前沿领域。关于远离 β 稳定 线及滴线附近核性质的研究将是这一前沿领域的一 个重要课题。寻找滴线核最近成为一个非常热门的 课题。所谓滴线核是指某核素的中子或质子已经达 到饱和,不能再增加中子或质子,这两种情况分别 叫做中子滴线核和质子滴线核,在这两种情况中又 分为单或双中子(质子)滴线核。目前实验上只能达 到很轻的滴线核。在核素图上很大区域内特别是对 中子滴线附近的情况了解很少。不同的理论模型给 出的滴线位置不同,甚至相差很大。滴线附近的核 是低密度、弱束缚的核系统,具有非常特殊的性质, 核的费米面有较大的弥散,最外面的一个或几个核

子具有非常大的空间分布。近年来已有很多理论和 实验对核的滴线位置进行了研究^[1-8]。

相对论平均场(RMF)理论是最成功的微观理 论模型之一。在过去的几十年中, 它成功地描述了 许多稳定核和远离 β 稳定线核的基态性质。RMF 理论给出了超形变核全同带^[9]和中子晕的新解 释^[10],预言了靠近中子滴线的重核中可能存在巨中 子晕^[11]的新现象。RMF 理论自然地给出自旋-轨道 力和赝自旋对称性的解释^[12, 13],对磁转动^[14]、集 体激发[15]、超重核[16]以及关键点核[17,18]也有很好 的描述。关于 RMF 理论的最新进展可参看文献 [19]。由于 RMF 理论能够很好地描述原子核的基 态性质,在文献[20]中,耿立升等人用 RMF 加上 态相关的 BCS 方法, 研究了近 7 000 个核的基态性 质,采用的参数组为 TMA。他们的工作很有意义, 而且工作量很大,计算的结果可以作为 RMF 理论 的数据。我们为了更进一步研究 O 到 Ni 的偶-偶核 的基态性质,采用了另外的两套参数组即 NL3 和 PK1,并对轻核区的偶-偶核的双中子滴线核做一个 系统的研究。

* **收稿日期**: 2007 - 07 - 03;修改日期: 2007 - 11 - 12

作者简介: 圣宗强(1975-),男(汉族),安徽含山人,讲师,硕士,从事理论核物理研究; E-mail: shengzongq309@yahoo.com.cn

基金项目:安徽省高校青年教师自然科学基金资助项目(2006jq1076);安徽省教育厅自然科学基金资助项目(2006KJ056C, 2006KJ259B);国家自然科学基金资助项目(10475001,10675001);教育部新世纪优秀人才支持计划基金资助项目 (NCET-05-0558);安徽省高等学校拔尖人才基金资助项目

本文第2部分为理论框架,简要介绍 RMF 理 论;第3部分是数值计算结果与讨论;最后是总结。

2 理论框架

在 RMF 理论框架下,核子被描述为在经典的 介子场中运动的 Driac 粒子,核子-核子之间通过交 换 σ 介子、ω 介子和 ρ 介子发生相互作用(质子还交 换光子产生电磁相互作用)。其出发点是一个有效 的拉格朗日密度:

$$\begin{aligned} \mathscr{L} &= \overline{\Psi}(\mathbf{i}\gamma^{\mu}\partial_{\mu} - M)\Psi + \frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \\ &\frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} - g_{\sigma}\overline{\Psi}\sigma\Psi - \frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu} + \\ &\frac{1}{2}m_{\omega}^{2}\omega^{\mu}\omega_{\mu} - g_{\omega}\overline{\Psi}\gamma^{\mu}\omega_{\mu}\Psi + \frac{1}{4}g_{4}(\omega^{\mu}\omega_{\mu})^{2} - \\ &\frac{1}{4}\mathbf{R}^{\mu\nu}\mathbf{R}_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\boldsymbol{\rho}^{\mu}\boldsymbol{\rho}_{\mu} - g_{\rho}\overline{\Psi}\gamma^{\mu}\tau\boldsymbol{\rho}_{\mu}\Psi - \\ &\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - e\overline{\Psi}\gamma^{\mu}\frac{1-\tau_{3}}{2}A_{\mu}\Psi , \end{aligned}$$

σ, $ω_{\mu}$ 和 $ρ_{\mu}$ 分别表示介子场,相应的质量分别为 m_{σ} , m_{ω} 和 m_{ρ} , 光子场则用 A_{μ} 表示, $e^{2}/4\pi =$ 1/137;核子场及其质量用 Ψ 和 M 表示,核子和介 子场的有效耦合常数分别为 g_{σ} , g_{ω} 和 g_{ρ} ; g_{2} 和 g_{3} \mathcal{E} σ 介子的自由相互作用非线性项耦合常数; g_{4} \mathcal{E} ω 介子场的自相互作用耦合常数; τ^{3} 则表示同位旋 泡利矩阵 τ° 的第 3 分量。利用(1)式,通过经典变 分原理可导出核子运动的 Dirac 方程:

$$\left[-\operatorname{i}_{\alpha} \cdot \nabla + V(\mathbf{r}) + \beta(M + S(\mathbf{r}))\right] \Psi_{i} = \varepsilon_{i} \Psi_{i} \quad ,$$
(2)

以及介子和光子运动的 Klein-Gordon 方程:

$$\begin{cases} (-\Delta + m_{\sigma}^{2})\sigma(\mathbf{r}) = -g_{\sigma}\rho_{s}(\mathbf{r}) - g_{2}\sigma^{2}(\mathbf{r}) - g_{3}\sigma^{3}(\mathbf{r}) ,\\ (-\Delta + m_{\omega}^{2})\omega^{\mu}(\mathbf{r}) = g_{\omega} j^{\mu}(\mathbf{r}) - g_{4}(\omega^{\nu}\omega_{\nu})\omega^{\mu}(\mathbf{r}) ,\\ (-\Delta + m_{\rho}^{2})\boldsymbol{\rho}^{\mu}(\mathbf{r}) = g_{\sigma}j^{\mu}(\mathbf{r}) ,\\ -\Delta A^{\mu}(\mathbf{r}) = ej_{\rho}^{\mu}(\mathbf{r}) ,\end{cases}$$

$$(3)$$

其中 V(r)和 S(r)分别是矢量势和标量势,可表示 为

$$\begin{cases} V(\mathbf{r}) = \beta \left[g_{\omega} \gamma^{\mu} \omega_{\mu}(\mathbf{r}) + g_{\rho} \gamma^{\mu} \boldsymbol{\tau} \boldsymbol{\rho}_{\mu}(\mathbf{r}) + e \gamma^{\mu} \frac{1 - \tau_{3}}{2} A_{\mu}(\mathbf{r}) \right], \\ S(\mathbf{r}) = g_{\sigma} \sigma(\mathbf{r}) \end{cases}$$

(4)

方程(2)和(3)可以自洽地迭代计算,并进一步计算 出结合能等一些基态的物理量。具体的细节可参看 文献[21]。

3 数值计算结果及讨论

利用 RMF 理论对轻核区一些核素进行系统的 计算。在计算中使用的是形变的 RMF 程序。所选 的核素为 O, Ne, Mg, Si, S, Ar, Ca 以及质子幻 数 Z=28 的 Ni 元素, 各同位素的计算范围分别为: ¹⁴⁻³⁴O, ¹⁸⁻⁴⁰Ne, ²⁰⁻⁴⁶Mg, ²²⁻⁵⁶Si, ²⁶⁻⁶⁰S, ²⁸⁻⁶⁴Ar, ³²⁻⁸⁴Ca 以及⁶⁸⁻¹⁰²Ni。在计算中采用了常用有效的 NL3^[22]和 PK1^[23]参数组,由于两组参数组给出了 相似的结论,在这里只给出 NL3 参数组的计算结 果。采用了轴对称谐振子基展开的计算方法,基底 数为 $N_{\rm f} = N_{\rm b} = 14$ 。由于在滴线附近的核是低密度 和弱束缚的核系统,所以对关联扮演了非常重要的 角色。为了计算简便,本文采用固定能隙的 BCS 近 似来描述对关联,对能隙取 $\Delta_n = \Delta_p = 11.2/A^{1/2}$ MeV。双中子分离能是检验微观理论的重要物理 量,可以反映出核的稳定性。双中子分离能是这样 定义的:

$$S_{2n} = E_{\rm B}(Z, A) - E_{\rm B}(Z, A-2)$$
 (5)

由于数据比较多,表1中只列出质子为幻数 (Z=8)的O元素以及大形变的Mg元素的计算结 果,其中包括核素的结合能 E_B 、平均每核子结合能 E_B/A 、四极形变 β_2 以及双中子分离能 S_{2n} 。同时还 列出了相应的可利用的实验数据^[24]和四极形变中 的液滴模型(FRDM)的结果^[25]。

从表1可以看出,对于O同位素链,RMF理 论计算的基态结合能比实验值系统地偏大2—4 MeV,其相对误差均小于3%。平均每核子结合能 是反映原子核结合紧密程度的重要物理量,其值越 大表明结合得越紧,核也就越稳定。从表1还可以 看出,对于O同位素链,理论计算表明¹⁶O的平均 每核子结合能是最大的,其值为 $E_B/A = -8.069$ MeV,也即¹⁶O是O同位素链中的最稳定核,这和 实验值是一致的。从理论计算的四极形变来看,O 同位素链中核素的四极形变几乎都在 $\beta_2 = 0.00$ 左 右,也即基态原子核的形状是球形的或近球形的, 这充分体现了质子数Z = 8的幻数效应。由于缺乏 形变的实验数据,在表1中列出了FRDM的结果 作为比较。可以看出,从¹⁶O到³⁰O,FRDM 给出的结果和 RMF的结果是一致的,即它们都是球形的($\beta_2 = 0.00$)。而对于³²O和³⁴O,FRDM 计算结果 表明它们是大形变核($\beta_2 = 0.22$),为长椭球形。对 于 S_{2n} ,理论计算的结果和实验值是基本一致的,都 能正确地反映出 S_{2n} 随中子数增加而逐渐减小的趋势。到达 ³² O时, S_{2n} 变为负值,即 ³² O是 RMF 理论 计算的第一个滴线外核,在后面还要详细讨论。

表 1 RMF理论计算的 O 和 Mg 同位素的基态性质及一些可利用的数据

Nucl.	$E_{ m B}/{ m MeV}$		$(E_{ m B}/A)/{ m MeV}$		β_2		$S_{2n}/{ m MeV}$	
	Exp.	Cal.	Exp.	Cal.	FRDM	Cal.	Exp.	Cal.
$^{14}\mathrm{O}$	-98.733	-100.952	-7.052	-7.211		0.04	40.199	37.320
$^{16}\mathrm{O}$	-127.619	-129.105	-7.976	-8.069	0.02	0.00	8.886	28.153
$^{18}\mathrm{O}$	-139.807	-143.672	-7.767	-7.982	0.02	0.00	12.187	14.567
$^{20}\mathrm{O}$	-151.370	-153.793	-7.569	-7.690	0.00	0.00	11.563	10.120
$^{22}\mathrm{O}$	-162.025	-163.982	-7.365	-7.454	0.00	0.00	10.665	10.189
$^{24}\mathrm{O}$	-168.478	-172.503	-7.020	-7.188	0.00	0.00	6.452	8.521
$^{26}\mathrm{O}$		-177.459		-6.825	0.00	0.00		4.956
$^{28}\mathrm{O}$		-180.575		-6.449	0.00	0.00		3.113
$^{30}\mathrm{O}$		-180.929		-6.031	0.00	0.00		0.351
$^{32}\mathrm{O}$		-178.375		-5.574	0.22	0.00		-2.556
$^{34}\mathrm{O}$		-175.563		-5.163	0.22	0.00		-2.813
$^{20}\mathrm{Mg}$	-134.467	-137.344	-6.723	-6.867	0.15	0.03		40.710
$^{22}\mathrm{Mg}$	-168.577	-166.535	-7.663	-7.570	0.33	0.31	34.109	29.192
$^{24}\mathrm{Mg}$	-198.256	-194.310	-8.261	-8.096	0.37	0.45	29.679	27.775
$^{26}\mathrm{Mg}$	-216.680	-213.585	-8.334	-8.215	-0.31	0.36	18.423	19.274
$^{28}\mathrm{Mg}$	-231.627	-229.483	-8.272	-8.196	-0.32	0.27	14.946	15.899
$^{30}\mathrm{Mg}$	-241.633	-241.921	-8.054	-8.064	-0.22	0.21	10.006	12.438
$^{32}\mathrm{Mg}$	-249.689	-252.545	-7.803	-7.892	0.00	0.00	8.056	10.624
$^{34}\mathrm{Mg}$	-256.585	-257.952	-7.547	-7.587	0.41	0.00	6.896	5.407
$^{36}\mathrm{Mg}$	-260.267	-264.945	-7.230	-7.360	0.33	0.37	3.682	6.994
$^{38}\mathrm{Mg}$		-268.789		-7.073	0.31	0.41		3.844
$^{40}\mathrm{Mg}$		-271.021		-6.776	-0.29	0.42		2.232
$^{42}\mathrm{Mg}$		-272.166		-6.480	0.27	0.41		1.144
$^{44}\mathrm{Mg}$		-272.111		-6.184	0.18	0.36		-0.054
⁴⁶ Mg		-271.832		-5.909	0.31	0.28		-0.279

对于 Mg 同位素链,理论计算的基态结合能和 实验值比较起来有一定的起伏,²²⁻²⁸ Mg 这几个核 基态结合能理论值比实验值小,而剩余的核的理论 值比实验值大。理论值和实验值的差距一般也在 2—4 MeV 之间。从平均每核子结合能来看,²⁶ Mg 是理论计算的 Mg 同位素链中最稳定的核,这和实 验值也是一致的。Mg 元素的质子数 Z=12,介于 Z=8 和 Z=20 这两个质子幻数之间,因而 Mg 元素 大多应该是轴对称的大形变核。计算结果也充分证 明了这点。在 Mg 元素中除了^{32,34} Mg以外,其它核 的四极形变的数值都在 $\beta_2=0.21$ 和 $\beta_2=0.45$ 之间, 为典型的大形变核。而 ³² Mg由于它的中子数 N=20 是典型的中子幻数,因此 ³² Mg的基态呈现出球 形($β_2$ =0.00)的可能性应该很大,FRDM 给出的结 论也和本文一致。然而很多实验都有证据表明 ³²Mg是大形变核,这和本文的结论完全相反。但在 文献[26,27]中,用 RMF 理论计算的 ³²Mg 的四极 形变都和本文的结果一致,即 ³²Mg 为球形核。因 此可以说 RMF 理论可能不能够很好地描述 ³²Mg 核,毕竟一个理论不可能将所有的核都描述得很 好。³⁴Mg 的中子数 N=22 比较靠近中子幻数 N= 20,所以³⁴Mg 的基态也呈现出球形($β_2$ =0.00)。 FRDM 给出的四极形变的结果和 RMF 的结果基本 是一致的。主要有两点不同:(1)对于 ^{26,30,40}Mg这 3 个核,FRDM 给出的 $β_2$ 的数值是负的,即这 3 个 核的基态是扁椭球形。而 RMF 理论的结论正好相 反,即这些核的基态为长椭球形。造成这种现象的 原因可能是这 3 个核有可能存在长椭球-扁椭球的 形状共存现象,即在核的位能曲面上长椭球区和扁 椭球区各有一个能量相近的极小点,而 RMF 理论 计算的结果显示在长椭球区的极小点的能量更低。 (2) 对于 ³⁴Mg, FRDM 给出的四极形变为 $\beta_2 =$ 0.41,为大形变核,而 RMF 给出的结果是球形的 ($\beta_2 = 0.00$)。考虑到 ³⁴Mg的中子数 N = 22比较靠 近中子幻数 N = 20, ³⁴Mg 的基态为球形的可能性 应该更大一些,即 RMF 的结论应该更可靠。 S_{2n} 的 理论计算结果和实验值是基本一致的。除了极个别 (³⁴Mg)的例外,理论计算值能正确地反映出 S_{2n} 随 中子数增加而逐渐减小的趋势。到 ⁴⁴Mg 时,其 S_{2n} 开始出现负值。

以上详细分析了 O 和 Mg 元素的 RMF 理论的 计算结果。其它 6 个元素计算结果的精确度和 O 与 Mg 元素大致差不多。

总之, RMF 理论对于这一区域原子核的基态 性质的计算是基本可靠的。

下面将讨论这 8 个同位素链中的双中子滴线 核。从表 1 可以看到,在 O 或 Mg 元素中, S_{2n}在中 子数增加到一定的时候,其值变为负值,如 ³² O 和 ⁴⁴ Mg。对某一同位素链来说,其双中子滴线核就是 双中子分离能大于零的最重核素。其中子数已达到 饱和,不能再添加中子。S_{2n}小于零的核称之为滴线 外核,即不能存在的。因此可以从 S_{2n}数值来判断双 中子滴线核。例如,对于 O 和 Mg 同位素链,最后 一个 S_{2n}大于零的核素分别为 ³⁰ O 和 ⁴² Mg,即 ³⁰ O 和 ⁴² Mg是这两个同位素链的理论计算的双中子滴 线核。为了更加直观,现将各同位素的 S_{2n}的数据绘 制成图(见图 1)。从图 1 中可以看到, RMF 理论计 算的 S_{2n}和可利用的实验值符合得非常好,特别是

图 1 RMF 理论计算的 O, Ne, Mg, Si, S, Ar, Ca 及 Ni 元素的双中子分离能 使用的参数组为 NL3;其中⊙为理论计算值,●为实验值。

在 Ar, Ca 和 Ni 这 3 个元素中, 理论值和实验值几 乎完全重合。除了极个别的(³⁶ Ne, ³⁶ Mg)之外, 各 同位素的 S_{2n}的数值都是随着中子数的增加而逐渐 减小, 并且变化一般都比较平缓。这与其他理论和 实验的结果是一致的。根据前面对双中子滴线核的 定义, 从图 1 中可以推断出这 8 个元素的双中子滴 线核分别为 ³⁰ O, ³⁸ Ne, ⁴² Mg, ⁵² Si, ⁵⁴ S, ⁶⁰ Ar, ⁸⁰ Ca 和 ⁹⁸ Ni。不同的理论模型, 甚至同一理论模型的不 同参数组所预测的双中子滴线核也是不完全相同 的, 有的甚至相差很大。在我们所研究的区域内, 其他理论研究主要集中在 O, Ca 和 Ni 3 个质子数 为幻数的元素上。对于 O 元素,目前实验上所达到 的最重的 O 同位素是²⁴O,近期在实验上寻找²⁶O 和²⁸O 的努力均失败了。而 RMF 理论预测的最重 的束缚核,即滴线核为³⁰O,这点与实验相差较大。 对于 RMF 理论,通常采用一组参数组去描述核素 图中的所有同位素,对理论和参数组都是一个巨大 的挑战,特别是由于相对少的核子数,RMF 理论对 轻核的描述是有一定困难的。而在文献[28]中, RCHB 理论预言的双中子滴线核为²⁸O,和本文中 预言的³⁰O相比少了两个中子。对于Ca元素,在本 文中 RMF 理论预言的双中子滴线核为⁸⁰Ca,而在 以前的一些工作中,预言的双中子滴线核为 ⁷⁰Ca^[29,30]或⁷²Ca^[28]。几种理论预测的差距还是比 较大的。同时我们也发现对于Ca元素,从⁶⁴Ca到 ⁸⁰Ca9个核,它们的S_{2n}都非常小,都约在0.5 MeV 以下,这些核的结构都非常松散,核的表面有很大 的弥散。对于Ni元素,本文预言的结果与其他文献 [1,29]的结果是一致的,其双中子滴线核都为 ⁹⁸Ni。

在图 1 中,特别是在 S, Ar, Ca 和 Ni 4 个同位 素链中,沿着 S_{2n} 随质量数的变化曲线,可以清楚地 看到此物理量的一些大的阶跃,这些阶跃正好对应 传统的中子满壳 (N=20,28,50)或亚满壳 (N=40),它们源于单粒子能级存在大的能隙。然而同时 我们也看到在 Ca 同位素链中,在 N=50的地方并 没有出现大的阶跃,这可能是由于晕效应而导致了 N=50的传统幻数的消失。在 Ni 同位素链中,可 以看到在传统中子幻数 N=50的地方有一个大的 阶跃,而在 N=70的地方也有一个阶跃,因此 N=70 可能是一个新的中子幻数,以上两点在文献[1] 中有详细的讨论。

4 总结

利用 RMF 理论系统地研究了轻核区的元素: O, Ne, Mg, Si, S, Ar, Ca 及 Ni 8 个元素的基态 的一些性质, 如结合能、四极形变、平均每核子结 合能以及双中子分离能等。限于篇幅, 文中只给出 O和 Mg 元素的计算结果。RMF 理论计算的基态 结合能和实验值基本是一致的。S_{2n}随中子数的增 加而逐渐减小的趋势被正确地反映出来。从双中子 分离能的分析可知, RMF 理论计算的各元素的双 中子滴线核分别为 ³⁰O, ³⁸Ne, ⁴²Mg, ⁵²Si, ⁵⁴S, ⁶⁰Ar, ⁸⁰Ca 和 ⁹⁸Ni。最后简单讨论了 Ca 和 Ni 元素 中的中子幻数情况。RMF 理论计算的结果还有待 于实验的进一步检验, 同时也为实验提供了方向。

参考文献(References):

- Bhattacharya M, Gangopadhyay G. Phys Rev, 2005, C72: 044 318.
- [2] Lalazissis G A, Raman S. Phys Rev, 1998, C58: 1 467.

- [3] Cole B J. Phys Rev, 1998, C58, 2 831.
- [4] Ferreira L S, Maglione E. Nucl Phys, 2005, A752: 2 23c.
- [5] Werner T R, Dobaczewski J, Nazarewicz W. Z Phys, 1997, A358: 169.
- [6] Lalazissis G A, Vretenar D, Ring P. Nucl Phys, 2001, A679: 481.
- [7] Chen Lixin, Xiao Guoqing, Guo Zhongyan, et al. Nuclear Physics Review, 2003, 20(4): 231 (in Chinese).
 (陈立新,肖国青,郭忠言等.原子核物理评论, 2003, 20 (4): 231.)
- [8] Chen Baoqiu, Ma Zhongyu. HEP & NP, 2001, 25(4): 309 (in Chinese).

(陈宝秋,马中玉.高能物理与核物理,2001,25(4):309.)

- [9] König J, Ring P. Phys Rev Lett, 1993, 71: 3 079.
- [10] Meng Jie, Ring P. Phys Rev Lett, 1996, 77: 3 963.
- [11] Meng Jie, Ring P. Phys Rev Lett, 1998, 80: 460.
- [12] Guo Jianyou, Sheng Zongqiang. Phys Lett, 2005, A338: 90.
- [13] Zhou Shangui, Meng Jie, Ring P. Phys Rev Lett, 2003, 91: 262 501.
- [14] Madokoro H, Meng Jie, Matsuzaki M, et al. Phys Rev, 2000, C62: 061 301.
- [15] Ma Zhongyu, Wandelt A, Giai N V, et al. Nucl Phys, 2002, A703: 222.
- [16] Ren Zhongzhou, Chen Dinghan, Tai Fei, et al. Phys Rev, 2003, C67: 064 302.
- [17] Sheng Zongqiang, Guo Jianyou. Mod Phys Lett, 2005, A20 (35): 2 711.
- [18] Sheng Zongqiang, Guo Jianyou, Meng Ying. HEP & NP, 2007, 31(6): 558(in Chinese).
 (圣宗强,郭建友,孟 影.高能物理与核物理, 2007, 31 (6): 558.)
- [19] Meng Jie, Toki H, Zhou Shangui, et al. Prog Part Nucl Phys, 2006, 57: 470.
- [20] Geng Lisheng, Toki H, Meng Jie. Prog Theor Phys, 2005, 113: 785.
- [21] Zhou Shangui, Meng Jie, Ring P. Phys Rev, 2003, C68: 034 323.
- [22] Lalazissis G A, König J, Ring P. Phys Rev, 1997, C55: 540.
- [23] Long Wenhui, Meng Jie, Giai N V, et al. Phys Rev, 2004, C69: 034 319.
- [24] Audi G, Wapstra A H. Nucl Phys, 1995, A595: 409.
- [25] Möller P, Nix J R, Myers W D, et al. At Data and Nucl Data Tabl, 1995, 59: 185.
- [26] Ren Zhongzhou, Zhu Z Y, Cai Y H, et al. Phys Lett, 1996,B380: 241.
- [27] Lalazissis G A, Raman S, Ring P. At Data Nucl Data Tabl, 1999, 71: 1.
- [28] Zhang Shuangquan, Meng Jie, Zhou Shangui. Sci China,

2003, **G46**(6): 632(in Chinese). (张双全,孟 杰,周善贵.中国科学(G集), 2003, **46**(6): 632.) [29] Fayans S A, Tolokonnikov S V, Zaivischa D. Phys Lett, 2000, B491: 245.

[30] Im S, Meng Jie. Phys Rev, 2000, C61: 047 302.

Study of Two-neutron Drip Line Nuclei in Region of Light Nuclei^{*}

SHENG Zong-qiang^{1, 1)}, GUO Jian-you²

 Department of Mathematics & Physics, Anhui University of Science and Technology, Huainan 232001, Anhui, China;
 School of Physics & Material, Anhui University, Hefei 230039, China)

Abstract: The ground state properties of even-even O, Ne, Mg, Si, S, Ar, Ca and Ni isotopes were studied with the self-consistent deformed relativistic mean field theory with NL3 parameter set. The calculated results of O and Mg isotopes were presented in detail. The calculated binding energies and the two-neutron separation energies were in good agreement with experimental values. By examining the two-neutron separation energies, it was suggested that ³⁰O, ³⁸Ne, ⁴²Mg, ⁵²Si, ⁵⁴S, ⁶⁰Ar, ⁸⁰Ca and ⁹⁸Ni are the two-neutron drip line nuclei. We also briefly discussed the possible changes of neutron magic numbers in Ca and Ni isotopes.

Key words: relativistic mean field; drip line nucleus; two-neutron separation energy

^{*} Received date: 3 Jul. 2007; Revised date: 12 Nov. 2007

Foundation item: Natural Science Foundation of High Education of Anhui Province for Youths (2006jq1076); Natural Science Foundation of Anhui Educational Committee (2006KJ056C, 2006KJ259B); National Natural Science Foundation of China (10475001,10675001); Program for New Century Excellent Talents in University of China (NCET-05-0558); Program for Excellent Talents in Anhui Province Universities

¹⁾ E-mail: shengzongq309@yahoo.com.cn