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Abstract: The average neutron population necessary for sponsoring a persistent fission chain in a

multiplying system, is discussed. In the point reactor model, the probability function 9(n, #,, )

of a source neutron at time ¢, leading to n neutrons at time ¢ is dealt with. The non-linear partial

differential equation for the probability generating function G(z; #,, t) is derived. By solving the

equation, we have obtained an approximate analytic solution for a slightly prompt supercritical sys-

tem. For the pulse reactor Godiva-[[ , the mean value of finite fission chain lengths is estimated in

this work and shows that the estimated value is reasonable for the experimental analysis.
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1 Introduction

For a nuclear multiplying system of a weak
neutron source with the reactive coefficient £, neg-
lecting delayed neutrons, if a source neutron leads
to a fission and sponsors a persistent fission chain,
the length of the fission chain will present in sto-
chastic fluctuation way, and the probability distri-
bution of the chains will be strongly correlated to
the value £ . When £<C1, the length of the fission
chain will be finite, and, the probability of sponso-
ring a persistent fission chain is zero. When £>1,
the length of the persistent fission chain may be fi-
nite or infinite, the probability mainly relies on the
extent of #>>1 . i.e., even in a supercritical sys-
tem, there is probability for a nuetron not to spon-
sor a persistent fission chain.

Although in the supercritical system with a
permanent source S, the probability of sponsoring
a persistent fission chain by the lasting injection of

the source neutron in the time span from zero to in-
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finity is unity, the randomicity of neutron trans-
portation at micro lays often makes the time,
length and probability, of persisitent fission chain,
stochastic. So the time for sponsoring first persis-
tent fission chain behaves in stochastic way.

In 1960, Wimett et al. " performed an experi-
ment which clearly illustrated this effect. Using
the Godiva-II burst assembly, 94 superprompt-crit-
ical bursts were initiated in which the average time-
to-initiation was measured to be approximately 3 s,
with a maximum of approximately 13 s.

Spriggs et al.®! have ever pointed out that, at
the time each burst was fired, the effective source
strength that includes delayed neutron contribu-
tion, corresponded to approximately 1 000 n/s,
thereforce, on an average, 3 000 source neutrons
appeared in the system prior to the initiation of
each burst. Since the probability of any neutron
source causing an initial fission chains is approxi-

mately 40%, it follows that an average of 1 200
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fission chains were initiated prior to the first per-
sistent chain, of course, those 1 200 fission chains
were finite length.

In the case of the burst that was delayed by 13
s, 13 000 source neutrons appeared in the system,
initiating 5 200 prompt fission chains, which ulti-
mately died-out before the first persistent prompt
fission chain finally occurred. In fact, even when
the system is superpromptly critical, most prompt
fission chains are still desitined to die out, only oc-
casionally a prompt fission chain will actually di-
verge.

In this paper a theoretical analysis to the Spri-
ggs’ conclusion of 1 200 fission chains with finite
length is carried out. By calculating the averaged
population of neutrons for sponsoring persistent
fission chains in multiplication system and the
mean value of finite fission chain lengths, and then
solving the partial differential equation of genera-
tion function of the probability distribution, and
then we could explain the physical quality of the
probability distribution of burst waiting time on

Godiva-II pulse reactor.

2 Necessity of Average Neutron Popu-
lation to Sponsoring a Persistent

Fission Chain

Consider a simple reactive system in which all
neutrons behave identically.

Define W as the probability of a source neu-
tron sponsoring a persistent fission chain, and then
(1 —W)" W expresses the probability of such a
case, n neutrons in the system can not sponsor the
persistent fission chain until the (72+1)th neutron
is introduced into the system; n is the expected
value of n neutrons introduced into the system to
sponsor persistent fission chain.

Hence, we have

WA (L —=WOW + (1 —W)* W + -

(1=W)' W =W A=W =1. (D

n=0

So, in the system, the mean neutron popula-
tion necessary for sponsoring a persistent fission

chain is following:

P= WG DA=W = (@)
n=0

3 Equation of Probability and Ap-

proximate Analytic Solution

Define 9(n, t,, t) as the probability that a
neutron at time ¢, leads to n neutrons at time ¢ in
Then 9 (n, ¢, t)

following differential equation™* ;

the system. satisfies the

d9(n, ty, t) _
‘ dt

—md(n, by, ) A —=p)n+1) -

9n+ 1.t )+ p O PO (n+1—) «
V=0

L9<77+1_))7 Lo s [) ’ (3)
with
DIPG =1 (4

where r is average neutron lifetime; p is the proba-
bility for each neutron to produce fission by ab-
sorption (with leakage included), and P (v) the
probability for each fission to emit y neutrons.
Eq. (3) described a Markov branching process.
I(n, t,, t) satisfies the initial condition 9(n,

tys 1) =208, » with 8, » the Kronecker function, given

by
1,
8;1/ =
0,

Obviously 9(n. t,, t) is normalized by the conser-

forn=1

otherwise .

vation condition.

D9, ty, ) = 1. (5)

n=0

We further introduce the generating function of

probability distribution as follows:

Glzs tys 1) = D20(ns 1y, D" (6)

n=0
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It is easily proven that gz tos 1) . (15
e tos 1) — 1 dG(z;5 20, O %6, The final condition Eq. (13) becomes
T n! dz =
g(zs 000 =1—z, (16)

Now multiplying Eq. (3) by 2* and summing
over n, the partial differential equation of G(z; ¢, , with the normalizing condition
t) is described as a(l5 20, 0) = 0. (17

Jd
Tth(z; to s t) = [p(ZP(V)z”—Z>+
Jd
<1—p><1—z>]7—z(,<z; tor 1) o (8)

where G(z; t,, t) satisfies the initial condition,
G(zs tys 1) = =z €]

Then the normalization condition Eq. (5) may be

re-expressed as:

The characteristic equation of the partial differen-

tial Eq. (7) is rewritten as follows:

z‘% = —p(zp(v)z”—z>—
d=—pd—2. (1D

According to the theory of the partial differen-
tial equation, the equation satisfied by the function
G(z; ty, 1) at 1, is identical with the equation satis-
fied by the function z(¢) at . Hence, we have

d
S

G s D =—p(DIPW[G(zs 140 DT—
0 v

Glzs tys ) )= (1= p[1—Glzs 10, D] .
(12)

The initial condition Eq. (9) becomes a f{inal condi-
tion

G(zst,t) = 2. (13)

For more convenience we define a function g(z; ¢, ,
t) as

gzt ) = 1 —G(z; 1y, 1) . (14)

By substituting Eq. (14) into Eq. (12), we get

T g(z, Lo ) =

d
dz,
PP —gles s DT — 1)+

Suppose that the system is slightly supercriti-
cal, the generating functions may be very small.
So the terms (1—g(z; t,, ¢))* with y==3 can be

dropped, we obtain
v 1 2
(1—g) %lfvgﬁ—?v(v*l)g . (18)

Substituting the Eq. (18) into Eq. (15) and
using condition 2 P(y) =1, it yields
v=0

d
dz g(z; Ly [) :70(}.{(2; Ly s l’) +
0

T N C TR (19)
2 T
with
a= L—D.k=wp.v= D POy,
yo—1 = D IPGWh—1) =T,
The Eq. (15) can be re-expressed as a linear differ-
ential equation for 1/g(z; to, 2)

d 1 a

a _ 7P2V2 1
d[o g(z; Lo s t) g(z; Ly t) 2

p—.
T

(20)

Since Eq. (20) satisfies the final condition
g(z; t, )=1— =z, the solution g(z; t,, t), the
probability of a persistent chain reaction caused by
a neutron injected into the system, of Eq. (20) can

be obtained as

7 (25 tys 1) = —=; e .
o By Lo — D1
Q2D
Letting
a = e "’ (22)
and
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I 22 pf(e“(’ 10)_1) R (23)
“ (n) = Jn 4 et dna~aq ="
we further have o (1+bb

gz ty. 1) = 4 S
e =y
z— <1—|—Z)
Sl
_ e (1= v en
1+6 (1)
Substituting this last expression into Eq. (7), it
gives
90, 1y, 1) =1— 2 (25)
’ 09 1+b ’
Ity ) =1— —4 <1+i)7”
ny Ly (1+mb b ’
n=%0. (26)

From a=(k—1) /7, and the definition of reactivity
p=C(k—1)/k, Eq. (23) can be written as
b= 12 (rovey 27)
Zp
If the above mentioned W, namely the proba-
bility of a source neutron sponsoring a persisting
chain reaction, could be regarded as the non-death

probability, we should have

w

1—,1m 90, 4, o)

:1_fllr9"<1_1i)

S

_ lim (_a \_ 2
t»oo<1+b) Fgljp’ (28)

and so Eq. (27) becomes

b= (et — 1) (29)

When b is large enough, 3(n, ¢,, t) can be made of
continuum on the variable n, and written in a sim-

ple form as

_ b —
with the normalization relation
- a _n o
90, Lo Z‘)_’_Jo me dn=1, (31)

and with the relation of the averaged neutron popu-

(32)

4 Mean Value of Finite Fission Chain
Lengths of Godiva- ][ Reactor

The formula (30) is just the analytical solu-
tion of the probability to a slightly prompt super-
critical system of a point reactor model with its
geometry independent of time for n—=0 and t>>1,.

Let #; be the time when the first persistent fis-
sion chain is sponsored, and let zero point be the
time when a system with a step increasing reactivi-
ty becomes prompt critical. Hence, a source neu-
tron introduced into the system at ¢, always pro-
duces a finite fission chain, when #,<¢,.

Let n(¢'=t—1t,) represent the time ¢ distribu-
tion of neutron population from a source neutron
injected into the system at z,. For the given ¢, we
always assume that the system has not been spon-
sored until the time ¢’, hence the neutron number
satisfies 0<{n<C n., where n is equals to 1/W by
Eq. (2). Therefore, the expected value of neutron

population at the time ¢’ is

1

w

)y = D nd(n. 0. 1) . (33)

n=0
Then we could estimate the mean value of a finite

fission chain lengths as follows

1

oo W
{n;y = EwJ dt/zﬁ(n, 0,1¢) , (34)
0

n=0

where 3 is the macroscopic fission cross section,
and v the neutron speed. By substituting Eq. (30)
into Eq. (34), the expected value of a finite fission
chain lengths is rewritten as
B - B .
iy = 50| e[| P . G5)
By using Egs. (22), (23) and (29) and relation

k/t=yv 3, we obtain
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tl—lﬂ
(36)
By com-

(ng) = iﬁjd |:1—ef (1+

Let y=1/(e —1), thus e =(1/y)+1 .
pleting the above integral, we obtain finally an es-
timated formula

1
w

(ng)y = (37)

By substituting the parameters of the Godiva-
IT reactor ( y=2.59, p($)=0.05, By =0.006 9,
[ =0.795)™ into this last formula, one can easily
estimate the mean value of the Godiva-II reactor
{(n;y =1 119.

This result seems to be quite close to that of

the Spriggs’ conclusion on experiment.

5 Conclusions

We have theoretically estimated that the mean

Bk iEBF R AT
x| #ED,

value, (n;> =1 119, of finite fission chain lengths
of Godiva-|[. In the case of reactivity p <1, <(n)
<n‘,¢ > - 1/):(0 .

The conclusion may also be used for evaluating the

is inversely proportional to 1:‘0, 1. e.

chain length of a finite fission in other impulse re-

actor.
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