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Abstract: Based on the analysis of neutron-separation energies, Ozawa et al proposed a new mag-
ic number ¥ =16 in light neutran-rich nuclei. The deformed and spherical relativistic mean-field
(RMF) calculations have been carried out fur N =16 1sotones. The numerical relativistic mean-

field results show there is a shape transitivn in ¥ =185 isotones. This is the possible cause of the

appearance of the new magic number in someneutron-rich nuclei.
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The experimental development of radwactive
beams has produced many new exotic nuclei far

-3 New phenomena such as neu-

from stability
tron halos in light nuclei'~#! have been observed
and studied™~%. The existence of proton halos in
proton-rich P apd 3 isotopes is predicted in Ref,
[7]). Brown et al'® also agreed that *P and 'S are
the mostly interesting cases in this mass rangel™%.
Recently the proton halos in P isotopes have been
observed experimentally”®?*. The study of the
properties of these nuclei brings a challenge to tra-
ditional nuclear structure models. At present
mean-field models have been widely applied to
these nuclei and received great succe~s'=7%,

In this paper we will perform both the spheri-
cal and deformed calculations in the relatvistic

mean-field {RMF? model for some & = 16 iso-
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tones. We input the force parameters TM2 which
15 Lhe parameter set for light nuclei’’’, The values
of the force parameter TM2 are: M=9338. 0 MeV;
ni,=526. 443 MeV; m.=783. 0 MeV: m, = 770. 0
MeV; go=11.469 4, g.=14. 637 7; g, —4. 678 3;
ge = — 4. 444 O fm™': gy = 4. 607 6: ¢ =
84. 531 8['°. With the TM?2 parameters. we treat

the center-of-mass correction in the same way as

Sugahara et al®¥, E..= —(1/2mA) (Pl.>. The

neutran pairing gaps are chosen as 8,=11.2/+ A
(MeV+ and this is an old formula on pairing gaps
and used 1n many studies. To test the code. we
give the RMF results of the nucleus 20 in Table 1.
The Pauli blocking effect of an odd nucleon can be

alsn treated 1o the code. The experimental binding
energy af “0 is taken from Ref. [14].
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Table 1 The bindlng energies Ev. root-mean-square radii .

and single particle levels of 0 with and without blecking

Blocking orhit  Ee/MeV Froif fm ro/im rp/fm 1satnl Tparzin)  1ppind  ldgeind 2sadnd  1diz{(n)
lds.z 162. 48 3.08 3.29 2.62 —43. 27 —z4.11 —24.11 —7.35 —3. 60 — 0. 24
132 163.5 3.03 3.23 2.62 —43. 28 —24. 25 —24.25 —T. 44 —3.45 —0. 24
2s12 166. 79 2.599 518 261 —43. B2 —24. 46 —24.46 —7.45 —3.42 —a0.03
No blocking 166. 57 J. o2 121 2. 61 —43. 62 — 4. 36 — 24,36 —7.43 —3.47 —D0.14
The experimental binding energy is 168. 48 MeV. rma ra and ry denotes radius of matter, neuiron and proton.
Very recently Ozawa et al”’” analysed the data 030
of the neutron separation energy of odd-A nuclei
. . 025} -
and odd-edd nuclei and concluded thar a new magic - _/\ =16 isotones
number W =16 appears {or neutran-rich nuciei with 020r 1
the third component of 1sospin 7,222, The ex- < 2t 1
perimental interaction cross section of nucleus-nu- ok o
cleus collisions also supports this conclusion'®, ons ]
Up to now, there is no theoretical study on this. uoL
D- L i '
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We carried out the deformed RMY calculation {or
N=1§ isotones and found that there existed shape
transitions from deformed ground state to the
spherical ground state with the increase of neutron
excess in this isotenes. The wvanation of the
quadrupole deformation parameters with T, of for
N =16 isotones is given in Fig. 1. It is seen from
Fig. 1 that the nuclei with 7,23 are approximarely
spherical (from *Ne to “C). The nuclel with 7', <Z
3 are deformed{{from **S to “"Na). For *C. we no-
tice that an oblate solution is almost degenerate
with the spherical solution in energy. This corre-
sponds a shape coexistence. In order to analyse why
there is 2 new magic number for nuclei with 7.2>3.
we performed further the spherical RMF calcula-
tion for W =16 i1sotones and draw the spherical sin-
gle particle levels in Fig. 2. In Fig. 2. the spherical
single particle levels of nuclel with F,<I3 are only
used for explanation because they are well de-
formed nuclei. It is seen that the level space be-
The level
251z approaches 1o the level 1d.; and a gap appears
between 25, and 1d;, when T.>-3. This is why
there is a new magic number for light nuclei with

1T.>>3. The RMF calculation shows that this magic

tween 1di,; and 25, increases with 7.

number N=16 is caused by the spherical shell clo-

sure in these nuclel with 77.>>3.

Fig. 1 The variation of the quadrupole deformation (33 of
the N =16 isotones as a function of the third compo-

nent of rhe isospin in the RMF model.
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Fig. 2 The varniation of the sphernical single particle energies
of N =16 isotones with the third component of the

120SPIin.

We have investigated the deformation and sin-
gle particle levels in N =16 isotones with both the
deformed and spherical relativistic mean-field meod-
el. With the standard forces we show that there is
The nuclei

near the stable line are deformed and then become

a shape transition in N =14 isotones.
spherical with incrensing neutrons. A gap between
the spherical level 2s,,, and I4.,; increases with the
increase of the neutron number. This s the cause

of the appearance of new magic number N = 15.
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Therefore the new magic number N =18 of light

neutron-rich nuclei with 7'.>>3 found by Ozawa et
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