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Abstract: Two numerical schemes of rotational neutron star based on general relativity, Hartle code and

Butterworth and Ipser’s code(BI code), are introduced and discussed. The numerical results of the two

codes with different equations of state( EOSs) are compared, and the results indicate that most properties

of rotational neutron star with different EOSs and different numerical schemes are in accordance with each

other.
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1 Introduction

Nowadays, solving the structure of neutron stars
rotating with arbitrary angular velocity has no difficulty
of principle, but has difficulties in numerically treat-
ment. Instead of two ordinary differential equations in
non-rotating case, one has equivalent of an infinite sys-
tem of ordinary differential equations in rotating case
— one for each coefficient of an expansion of all rele-
vant quantities in spherical harmonics. An exact nu-
merical solution for arbitrary angular velocity seems for-
midable. So several different approximate solution of
this problem were developed!"™!. In this paper, Har-
tle code and BI code will be introduced and discussed,
and the numerical results of the two codes with differ-

ent equations of state (EQSs) will be compared.

2  Numerical Scheme of Hartle
Code'"

In relativity, the space-time geometry of a rotating

star in equilibrium is described by a stationary and axi-
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symmetric metric of the form

ds® = - e¥di® + edr* + ¥ (d¢ - wdt)? +

*dg*, (1)

where w(r) is the angular velocity of the local inertial
frame and is proportional to the star rotational frequen-
cy {2, which is the angular velocity of the surface of the
star relative to an observer at infinity. Accurate to or-
der {2, from the (t, ¢) component of Einstein field
equations, one gets

LA (2)
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r dr
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where @ = {) - w, which denotes the angular velocity of
the fluid relative to the local inertial frame, j(r) =e®
- [1 =2M,(r)/r]"*. The boundary conditions are
imposed as w = w, , dw/ dri; =0, where w, is chosen
arbitrarily. Integrating eq. (2) outward from the cen-
ter, one can get the function w(r).
Expanded the metric function through second or-

der in {2, from the (¢,t) and (r,r) components of
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Einstein field equations, one gets two coupled ordinary ds® = - e™dr® + X (d? + dg*) +
differential equations of 4, and m, as rsin’0B%e ' ( do - wdt)? (6)
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where p; = - b, + %r%‘%z + C, here C is a'con-

stant determined by the demand that hy be continuous
across the star surface. These equations are also inte-
grated outward, with boundary conditions that both m,
and pg’ vanish at the origin.

Using above result, the effection of the rotation
could be calculated. With the same central density,
the difference between the mass of the rotating star and
the non-rotating star is

2

8M=mo(R) +%{; (5)
where J = (1/6)R4d5/drl,=,, , R is the mean radius of
the rotating star.

3 Numerical Scheme of BI Code'™

The BI code solves the four field equations follow-
ing the Newton-Raphson linearization and iteration pro-
cedure. One starts with a non-rotating or slow-rotating
model and increases the angular velocity in small
steps, treating a new rotating model as a linear pertur-
bation of the previously computed rotating model. In BI
code, each linearized field equation is discretized,
while in Hartle code the equations of the perturbed
metric function are coupled, so the four field equations
and the hydrostatic equilibrium equation are solved
separately.

In the BI code, the metric of a rotating star in

equilibrium is written as

The Bardeen and Waginer projected field equations"’!
(BW equations) will be used as the Einstein field

equation as following

V - (BVyp) = %—rzsinzeBSe'”Vw - Vo +

dmBe | (2+’1’)(12+ ), 2], (7)
-V

V. (rzsin2033e4"Vw)
= ~ 16nrsingB2e* > ‘(‘%{—%, (8)
V + (rsinfVB) = 16nrsingBe* >p | (9)

and [, u» which is a long equation ( please see Ref.

3), where V is the 3-dimensional derivative operator

in a flat 3-space with spherical coordinates r, 8, é.
The angular expansions of the metric potentials

could be written as

v = gvu(r)Py(p-) , (10)
0 = [iowzt(r)sz.,.(ﬂ-) s (11)
B = §Bu<r)ﬁ<#> , (12)

where P,(u) is a Legendre polynomial, T;_ () is a
Gegenbauer polynomial.

The method for numerical calculating the models
s as follows: given the EOS, injection energy B and a
set of solutions v, ¢, B, ¢, p for a small £, one in-
creases the angular velocity in small steps, treating a
new rotating model as a linear perturbation of the previ-
ously computed rotating model, as each licarized field
equation is discretized, the linear system could be

solved.

4 Comparison of the Numericsl
Result

Using Hartle code, Weber et al!*! investigated the
influence of rotation on the bulk properties of neutron
star by several “modern” EQS!5% The result are

presented in Table 1. They attempt to improve on Har-
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tle code to obtain a more accurate estimate of the angu-
lar velocity at the mass-shedding limit. Form their
work, we know that Hartle code cannot have a suffi-
cient accuracy to compute models of rapidly rotating
relativistic stars.

Friedman et al'®! extended the BI code to obtain a

large number of rapidly rotating models based on a va-

[10—12]

riety of realistic EOSs . The result are presented
in Table 1. From the work of Friedman et al, we know
that the Kepler angular velocity (2 is substantially
small than the value for the spherical model. The ran-
ges of () are from 55% of its spherical value for softest

EOS to 75% of its spherical value for stiffest EOS.

Table 1 Rotating neutron star’s property with “modern” EOS*

pPc Ry M, P R, oM !
EOS e
/(10%g-em™?)  /km Mg  /10°s!  km M, (10Mg - em™2)

Harle . HV 1.40 2.6 1.88 9.2 148 073 0.20 23.0
code Stiffer AR +HY 1.40 12.0 1.87 9.8 14.2 0.74 0.20 22.4
HFY 1.70 11.3 2.14 11.8 13.0 0.73 0.18 24.5
Bl . G 5.50 1.36 152 86 0.62 0.14 8.60
c(;de stiffer FP 2,50 1.97 12.3 12.0 0.67 0.17 24,1
L 1.11 2.65 7.6 17.3 0.69 0.20 78.7

(=Y + wﬂ%ﬂc) is the Kepler angular velocity, the other notation is the same as in Table 1.

The effect of rotation on the moment of inertia is
that the effect is greatest on the stiffest EOS with 170%
of its spherical value, while on the softest EOS there is
still 60% increase.

To the same value of the total mass M of the star,
the central density p, of the non-rotating spherial model
is bigger than that of the rotating model with Kepler an-
guler velocity, while the radius R of the non-rotating
model is small than that of the fastest rotating model.

Using Hartle code, Schramm'"! studied the prop-
erties of rotating neutron star by a generalized chiral
SU(3)-flavor model. From his work, we could know
that: (1) Compared to Newtonian value of (2, there is

a decrease in Kepler angular velocity {2 of about 25%
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