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Abstract; In high energy heavy ion collisions. a possible measure for a certain irregularity of the

spectra of produced particles is proposed by using the Wigner-Dyson statistical analysis method.

The preliminary results from EMUQ1 experiments are given by using this statistical analysis

method. The analysis shows that the dominant effect is random emission in available high energy
nucleus-nucleus collisions at CERMN/SPS and BNL/AGS regions,
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1 Introduction

The occurrence of large rapidity densiry fluc-
tuations and some short-rang correlations of
charged particles and events of very lerge multi-
plicity fluctuation have been observed in high ener-
gy heavy-ion collisions, which has been suggested
as a signature of collective ellects of hadronization
or the dynamics of multiparticle production™. The
most frequently used methods for carrving out such
studies have been to perform the normalized facto-
rial moment analysis™ for fluctuations.

A large number of particle produced in a [inite
volume of the collision hints a fairly large density
of energy released during colliding and thus a pos-
sibility of appearance of exotic phenomena. In re-
cent years, one of main tools of studying the quan-
tum manifestation of chaos, the analysis of spectral
properties, has been successflully applied to a vari-

3 We menton the many

ety of quantum systems
examples of the Wigner-Dyson type random matrix
theaories (RMT ¥~7-, for instance, in nuclear

physics. atomic physics, molecule physics and
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=181 Therefore, it is not surprising

chemistry etc
to expect rhat the behavior of correlations and fluc-
tuztions of multi-particle production in high energy
heavy-ion physics should become the focus of keen
interest as precise new data can be available in pre-
sent and future relativistic heavy-ion collision ex-
periments.

This paper is organized as follows: The Wign-
er-Dyson spectral analysis method for quantum
systems 1s preliminary introduced in Section 2. The
preliminary results [rom the EMUO experiment
data by using the Wigner-Dyson method are shown
in Section 3. Wigner’s random matrix theory and
Wigner-Dysaon statistic method are given in Ap-
pendix A and B.

2 The Approach to Wigner-Dyson
Spectral Statistics

In general assumptions and results of the
Wigner-Dyson type random matrix thecries(RMT)
are relevant with the context of chacs dynamics

By using RMT one should

and quantum physies .
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keep 11 mind: (1) simplicity may emerge in sttua-
tions with imually appear as desperately complicat-
ed and random; (2)probabilistic and statistical ar-
guments may be fruitfully applied to systems
where no external randomness nor stochasticity has
been introduced from cutside. However as empha-
sized by Bohigas™, even though the beauty and
depth of RMT has been recognized and appreciated
almost since the theories birth: 1t is the one-dimen-
sional theory par excellence! Nar anly does it have
immediate usefulness and validity for real physical
systems but it has given rise to profound results
and males use of the deepest thecrems of analysis.
Until some years ago, it has remained the almost
secret garden of a few theoretical physicists with
high mathematical skill. The situation now is
changing and a brcader community is interested in
RMT.

As well known. the quantum mechanics for a
dvnamical system in a compact space yields a set of
discrete eigenvalues, called the spectrum, rather
than a continuous possible range as in classical me-
chamics. It is obvious that the spectrum can give us
many more characteristic features and much mare
information than the classical continucus range.
The details of the spectrum can change from sys-
tem ( or event to event), but some certain proper-
ties should be quite general (some general discus-
sion are given in Appendix A and BY,

It is often taken for granted that one results to
statistical studies of such systems only because de-
tailed properties of the spectrum are not really
open to calculation. This is indeed one of the rea-
sons but not really the mamin cne. Such studies.
whose nature is essentially different from the study
of individual density, are of interest because they
reveal new feawures of the system. The situation is
analogous to that in statistical mechames, where
properties such as temperature and entropy are ex-
hibited best by systems of many particles, Even tn
system where the individual properties and their

quantumn descriptions are better known than the

corresponding phase-space or related descriptions
statistical method are often essential for a more
complete understanding.

The study of many particle spectra are usually
concentrared with properties of short sequences of
related density. In contrast to that. our present
purpose will be paid attention to the density fluctu-
ations and correladon in general case.

Considering an event which has a {inite se-
quence af a particles with pasitions £, <{&,< --- £,
in one-dimension axis of some certain argument
{for instance. energv. transverse energy, rapidity
etc. ). The partcle density function of this single

event s

plEY = D 8(E— &) . (1)

=1

Assume that the considered range or window
from —L/2 or L/2 in which there » particles are
distributed. Then. the average value of the nearest

neighboring spacing of this event is
==, (2

To make reasonable comparison of the detail struc-
ture of the nearest neighboring spacing among the
different events, we need to re-scale the positions

of the considered axis;

£

5

x, = i =1, 2, -, n. (3

So that the values of rescaled arguments of parti-
cles range by 'x|<< a/2. Let us denote by
= X4 T X A

the k-order spacings beitween two particles with
scaled arguments x, and z,i,4. having &k particle in
between £ = 0. 1, ---. The nearest neighbaring
spacing is ta set k=0, which we shall focus in the
following.

Now we introduce a staircase function of x {ar
the sequence of new arguments x,, =1, 2, "=, n

a5

Nixz) = r drp(x) . 4)

where plz)=3p{7y) .

The quantity, N{x) is just the number of par-
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ticles with positions from —=»/2 to «. For a se-
guence of £ with constant average spacing. 5, the
event-average of the staucase function. (N (1?3,
will lie on a straight line, with slope 1/5. There-
fore, it is convenient to introduce a measure of the
intensity of the fluctuations of the staircase func-
tion around a straight line. A possible measure is

given by the least square deviation (the minimized

variance}:

.1 [ -
D{(n) = min :J. de[N{x) —uw — bx]*, (51
—nf2

in which parameters @ and b are chosen by the min-
imized requirement that

2D _ 2D

Ta a6 9
This will give a description of the flucruations of
the considered spectrum around a straight line u+
bx for multi-particle production event by event.
This straight line is corresponding to the umform
distribution of particles in the considered argument
window. For events which have the same fixed
multiplicity n. we can get the event-averaged value
of the minimized variance of the spectrum . (D (x5,
Theoretically. it is always possible to give a n-
particle joint probability density, P(2 , ===, x,).
We shall denote the ensemble average, the average
with respect to the distributon P{x .- . x.}. by
Thus the semi-inclusive single-par-

bracket( - %,

ticle density of rescaled argument i~

Fares
dx, = dr, o YFP (7 oo x,) (B

—

{plx))y =
and the two-particle correlation function i1s deflined
{plxiplr )y = J._mdrl---dx,,p(r),o ()

Plxyiaxa) . (7

The Wigner-Dyson statistics is the average of

D(n) over this ensemble of sequence (experimen-

tally corresponding to the average over events).
That is

12

nt

(DY Yy = (N — N' — =xN >, (8

where we introduced the horizontal average of sin-

gle event,

1 H

n —atz

and the averages in Eq. (8) can be written

l 2 ‘T
(Nz}z—J. d.TJ. drx, »
b —=/f2 - a7

r dryiplay 1 ola)) (9)
— 2
. 1 i 2 "2 N e
(N = _E_J‘ de‘ de. dx, -
n —ni2 —xi —miZ
Jz RERVIERTIENS (10
and
o 1 nid =2 , N
(N == J. xd,rJ‘ de:J. dx, -
1 —n/? — 2 —mi
J'I ERTIERVIERP (a1

For a purely random sequence. a sequence
with constant denstty and without correlation be-
tween particles. the distributions of the rescaled
argument spacing between two nearest neighboring
particles is the Poisson tvpe (see Appendix B) with

Prooa (51 = expl— 5) . )
Take the average of D(n}y over the Poisson ensem-
bles. we get a simple expression
i
15

which we shall use to make comparison with data

(D) Y ppson = (137

of the EMUO1 expenment in the following section.

As pointed out by Reichl®’, conservative sys-
tem can be divided into two types. integrable and
non-integrable. The latter may themselves be di-
vided into two classes. One classes contains the
chactic with non-smooth

completely SYstems

Hamiltonians.  Non-integrable systems  with
smooth Hamiltonians comprise the second class.
The vast majority of physical systems that we deal
with belong to this second class. All non-inte-
grable svstems exhibit chaotic behavior to various
degrees, However, we must careful in studying
quantum systems because of the Pauli uncertainty
principle. It appears that gquantum systems are of
twn types. they are either integrable or non-inte-

grable. The spectral properties of these two types
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ol guantum system can be quite different. Inte-
grable quantum systems have a random spectrum.
Non-integrable guantum systems, whose classical
counterparts are chaotic, have a spectrum which
exhibits eigenvalue repulsion and is fit quite well

by random matrix theory.

0.8

oz2ff
{ Poisson-iype

—

o 05 1 1.5 2 2.5 3 35 4

Fig. 1 A plot of the Wigner diseribution Pwgne (55 and the
Poisson distribution Praw. (5) as a function af the

spacing 5. for =1,

The random matrix theory is based on the pre-
condition that we know wvery little about the dy-
namics of the system we are considering except for
certain symmetry properties. For our purpose the
system formed from high energy heavy-ion colli-
sions is extremely complicated and we know really
very little about its dynamics. So gnre can consider

the colliding system as a“black box™ in which all
particles are interacting according to some un-
known laws and pay intensive attention on devia-
tions of some quantities from their mean values.
Such deviations are normally thought to be less im-
portant and seldom studied carefully in normal
statistics because they are very small. Even though
the multiplicity can be several hundreds or thou-
sands as in JACEE cosmic-ray event or in future
ALICE events on the LHC, the thermodynamic
Iimit cannot be satisfied and deviations from mean

values shouid be much more important than be-

fore.

As shown in Appendix A, the basic problem
of random matrix theory is to set up a probability
distribution on the elements of the Hamiltonian
matrix. There are a number of statistical properties
of random matrices that are commonly used in ana-
lyzing the spectral properties of the considered sys-
tems. The simplest of these is the density of eigen-

values. In Fig. 1, we compare the Wigner distribu-

tiott.
s 1 w52
Pagee (s} = Eg—zexpl - (14)

with the Poisson distribution, Eq. [127], for the

case 5=1.

3 Preliminary Results from EMU(Q1
Experiments

In this section the preliminary resulis from
EMUO1 experiments!!!! will be given to show that
the dominant effect is random emission in available
high energy nucleus-nucleus coliisions at CERN/
SPS and BNL/AGS by using the Wigner-Dyson
statistical analysis method.

The EMUJQL collaboration has measured nu-
cleus-nucleus collisions for various projeciiles and
targets at different incident energies taken with nu-
clear emulsion detector. In Ref. [107, they attempt
to extend the statistical analysis method proposed
by Wigner, Dyson and Mehtal*~% to present their
data on fluctuations and correlatipns in %0, %8, %S
and " Au induced heavy-ion interactions at 10.7 —
200 AGeV. Measure of the size of the fluctuations
is made by using the probability of the nearest-
neighboring rapidity-spacings between produced
particles event by event. .

The EMUO1 experiment!"12 yged two sorts of
detectors including both conventional emulsion
stacks exposed harizontally and special emulsion
chambers exposed wvertically. The exposures tock
place during the period 1986 — 1989 at BNL/AGS
for -*() and **Si beam at 14. 6 AGeV and at CERN/
SPS for "0 at 60 and 200 AGeV and for **S beam
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at 200 AGeV. One of the highlight during 1957
was the realization of " Au beam running at the
BML/AGS for 10.7 AGeV. The experimental data
used in that investigation is collected cnly horizon-
ially exposed emulsion stacks with mintmum bias.
The measured shower particles are =singly charged
particles with 8> 0. 7 which are mainly produced
hadrons for the study.

Their analysis was in the selected parts of full
phase space with limited size. It is obwvious that the
analysis in a limited rapidity window,
|7—7. |<<L/2. where w, is the rapidity position of
the center of mass of nucleon-nucleon system cor-
responding to different incident energies, should be
more detail for the study than that in a full longitu-

L They have chasen the win-

dinal phase space
dows with not large size anly in the central rapidity
region in which the single-particle rapidity distri-
bution should be rather even.

In Fig. 2—4 are shown the relevance of data
to the window cuts. the incident energies and the
projectile nuclei respectively. The curves of theo-
retical caleulation for comparison are also fallowed
by the shift. It is obvious from the figures that da-
ta lie practically mostly around the Foissan-type
cutve D) Ypamee =n/15. Tt locks like rhat the da-
ta points {Tom more narrow window L. =10.2} ti
wider window (L=1.8) lie on the =anie curve al-
though the fluctuation is large for higher multiphe-
ities fram Fig, 2. That is to sav the random emis-
sion does dominate aver the present selected win-
dows which are all belong to ceniral rapidity re-
gion. For comparison of data from different ener-
ges cach other we selected the window with size L
= 0, 6 [or oxvygen induced interactions. {Considering
the present beam energy region {rom 14. 6 to 200 A
GeV, the independence of data on the energv is ob-
vious ., which can he seen {rom Fig. 3, The BML/
AGS gave us the possibility to get evenis from dif-
ferent projectile nuclei (axygen. silicon and gold )

al nearly same energies. The data comparison is

shown in Fig. 4 where there is no evidence for pro-

1ectile dependence,

10

(D)
- N W s oo = m W

L] 20 40 (11} 30 100

Fig. ? Prelimimary results {fraom the EMUQ] experiment-1.
Event-averaged values {D(x)) vs muluplicities n 1n
sclected rapidity regions with sizes L=0.2, 0. 6. 1.0
avd 1.8 {or "0+ Em interactions at 200 AGeV. Sohd

rurve s the theoretical calculation from Poisson type.

EMUO1 'S0+ Em

window size 0.6
a 146 AGeV

® 60 AGeV
o 200 AGeY

YT T

[ I S S T B =

- — Paiggion
£
[
T :
3
o
IF
a . R . .
n 20 40 B0 80 100
n

Fig. 3 Prebnuanary results from the EMUOL experiment-'"2,
Eveni-averaged value {Déx}} vs multiplicities » 1n se-
lected rapidity region with size L=10.6 for **Q +Em
wmieractions at 14. 6, 60 and 200 A GeV. Sobd curve

1= the theoretical calculation feom Poisson type.

In summary the main points from the analysis
of the EMUDT experimental data are as following.
11 The dominant effect for events of nuclear
mteractions induced by high energy heavy-ions es-
pecially for thase with larger multiplicities might
be random emission according to the available

EMUNT data. Although there should he some ef-
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fects on correlation between produced particles
from sub-processes. which is given nise to by some
reaction mechanism, but they might be submerged
in the dominant information of random environ-
ment of nucleus-nucleus collisions. This appears
from the above analysis that the! Dixn) ) values lie

on the estimation from random sequence of Pois-

son—type.
10
gf EMUO1 necleas+Em
8 window size 0.8
7E 270 148 AGeY
e v 105; 148 AGeV
-~ 01" An 10.7 AGeV
£ 5F  — Poimsion
84
3
2
1
ﬂ 1

a0 BQ 100

Fig. 4 Preliminary results from the EMUC! experiment-ti,
Event-averaged values {3 (n)} vs multiplicities » in
seleeted rapidity region with size L.=10, 6 for *O+Em
and *$1+Em interactions at 14. § A GeV and ""Au+
Emat 10.7 A GeV. Solid curve is the theoretical cal-

culation from Poisson type.

(2) The data show that this feature s win-
dow-cut mdependence in the central rapidity re-
gIon.

(3) Energy scaling of such effect is also in ex-
istence at the present analysis.

(4) There iz no obvious difference among the
data from different projectile nuclei,

As pointed cut in Ref. [12] that the geometry
of nuclear collisions and the number of participat-
ing nucleons play an important role 1o the particle
production . which result to larger fluctuations and
random emissions. So that for future experiments
with higher energies and heavier nuclei we have to
face the dominant effect of random emission from
nuclear peometrical fluctuation and intra-nuclear
rescattering due to the encugh high energy.

Another point we have to emphasise is that

even though the present analysis have been made
by quoting the Wigner-Dyson statistics, we do
know it is more sensitive for the measurement of
correlation among the one-dimension sequence and
can provide a new and better proof to supplement
the measurement from other methods. And dy-
namical mechanism in detail has not been paid at-
tention to. It is so early to say anything about
that. At moment the experimental data must be so

lack far from drawing any conclusion.

Appendix A: Wigner’s Argument of
Random Matrix

The random matrix theory of gquantum sys-
tems is base on the assumption that we know very
little about the dynamics of the considered system

These

symmelty properties impose restrictions on the

except for certain symmetry properties.

from of the Hamiltonian matrix of the system,
where the matrix elements were unknown and un-
knowable.

Consider a 2 X 2 dimensional real symmetrnic

Hamiltonian matrix,

H =

|hu Az (A1)

hz] hZZ

with independent random matrix elements. A, .4z

and %,,. The eigenvalues are

e, = %[(h.] + hy) +

”‘/(hu — Ry ) 4+ 4k, ] (A-2)

Thus. the spacing between these eigenvalues,

s= A (hy — hyp)? + 4hE, (A-3)

will be random, if A, As and k,; are random.
MNow we consider the distribution of nearest
neighboring spacing for a random sequence in cne-
dimension axis. The axis may be the energy, the
points corresponding to the discrete energy levels
of a nuantum system {e.g. . a complex atomic nu-
cleus. an atom. or a molecule): or it may be the

mass axis, the points corresponding to the nuclear
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{fragments in nucleus-nucleuws collisions: or it may
be the frequency axis., the points corresponding to
the normal frequencies of a vibrating membrane, or
the eigenfrequencies of a microwave ravity, or the
eigenfrequencies of a smali metallic block; or it
may be the energy axis. the points vorresponding
to the measured energies of particles produced in
high energy heavy-ion collisions. or the compo-
nents of energy, £, and E,, or rapidity.

The probahility that a position will be occu-
pied by a particle in the small interval (et s5.e+3+
de), proportional to ds, which will be dependent of
whether or not there is a particle at =,

Given a particle at £. let the probability the
next position at which another particle will be oc-
cupied be in (et5s+ et+35+ds) be P(s)ds where s>
0. We call P(s) the nearest-neighbor spacing dis-
tribution which can be determined by

Pldds =PI & ds|0€ 5) PLIOE 5) &
(A-4)
where P{n & 5) is the probability that the interval
of length s contain = particles and PLnEdsinEs)
the conditional probability that the interval of
length ds contain m particles, when that of length 5
contains » particles,
So we have the prohability that the spacing is

larger than s

POESs) = FP(z)d,—c : (A-5)
Deline
Ro.is¥s = Plem € ds|n € 5}, {A-5)
The Poisson law . if one takes
Rty = L, (A-7)

s
where 5 is the mean local spacing, so that 1/5 is the

density of particles, one obtains

Pronea(5) = —}—expflé_l . (A-E)
5 I

The Wigner law: from the assumption of a linear
repulsion
RisYy=as , (A-9)

where « is a constant. one gets

- L)
Prvgne (5} = % exp(— :—gj) . (A-10)
MNormalization conditions are
I:P(s)ds =1 (A-11}
and
f:sP(s)ds —3, (A-12)

For purely random seqguences, the spacing dis-
tribution 1s Poisson type in Eq. A-1. In Fig. 1 we
compare the Wigner distribution, Pwgme (s}, with
the Poisson distribution., Ppou., (5}, for the case 5
=1. For a random sequence there is a high proba-
hility of finding very small spacings between the

near neighboring eigenvalues.

Appendix B: Wigner-Dyson Statistics

let xy,1;.'"*+ zx be the rescaled positwons of
N particles on an one-dimensional real axis, with
average density unity and with the joint probability
regardless of ordering
Palay oy xpidx; o dxy
The statistical properties of this sequence can
be characterized by a set of n-particle correlation

funcrion

Ry, =

P o
J d-Tu+|,"'d-TNP.~(-Tl! LRI SV I

(B-13

It is ronvenient to introduce a set of n-particle clus-
ter functions by subtracting ocut the lower-order

correlation terms {from R,

Tixr) = R(x) ., (B-2)
T‘;(.T], .:r«_\) = — Rg(rl. ..Tg) -
Rix)R (x) (B-3)

FToar , r, x;)
= R(xyy Zay 33) — [ IR (s 2:) +
Ria )R Axy o) 4+ R(xIR ()] +
2RU(IR ()R (=) {B-4)

etr. The advantage of the cluster functions is thai

they have the property of vanishing when any one
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{or several) of the gaps r= | . — x, | becomes
large. One also uses the Fourier transform for two-
particle cluster function T:. b(%), called the two-

particle from factor.

+Dcl
b(k) = J‘ Ta{rexp(i2nkr)dr | (B-5)

The semi-inclusive single-particle density and
the two-particle correlation function can be ex-
pressed as

(plx)y =T (). (B-6>

(plx)plr' )y = 8(xr — )T (x> +
TOT () + Tz ). (B-D

Thus the average of D{n) can be expressed 1n

terms of T,

R R

+ z|dz , (B-8)

where the two-particle cluster funcrion 7. depends
only on the relative distance x =21, —71;.

The following is cited two typical ensembles
which can be obtained from available references.

The Poisson type ensemble with T:{r,z,) =10

References ;

[1} Adamovich M 1. Aggarwal M M. Alexandrov Y A, e af. Ra-
pidity Density Distmbutions and Their Fluctuanons in Violent
Au-induced Muclear Interactions ar 11. 7 A GeV[]1]. Phys
Letc. 1593, B322, 166 —170; Kittel W Proceedings of the
XX Symposium on Multi-particle Dynamics[C]. In: Banir R,
Wigner D. ed. Bad Holmecke; Warkd Scentfic, 1990, 401 —
410; Schmitz N. Preceedings nf the XXI Symposiom on Muln-
particle Dynamics [J]. In. Wu Y ¥, L 1. S ed. Wuhan,
World Scientific, 1891, 377 —3k5.

[2z] Bialas A. Peschansk) R. Moments of Rapichity Distrbutions as
a Measure of Shart-range Fluctuanuns in High-energv Colli-
sions[J]. Mucl Phys, 1936, B273. 704—7 8.

(3] 2Zhou Dmicus, Car Xo, Li Yunde. er a/i M Rigidity Measure-
ment of Pesdo-rapidity Specirum of Produced Particles an

High-energy Nucleus-nucleus Collisions[J]. Chun Phys Len,

simply give Eq. (13) for random emission process-
es.

Another well known one is the Wigner type, =
sequence of particles with joint rescaled rapidity
distribution

Play, vve 3,0 ¢ H |z, — =,| *

rmp=1]

exp[—%zxf] , (B-9

A=1

which might be corresponding to some kind of
sitong negative correlation between particle and
gives the distribution of rescaled spacing between

two nearest neighboring particles :

™

P (5) = 2

sexpllﬁi:—j . (B-10)

The average of D(n) over Wigner ensemble is

CD01) wigner = ﬁ‘_lnczm‘: + ¥ — % — %:' .

{B-11)

where ¥=0.577 216 is Euler’s constant,

One can consider other types of ensembles, e.
g. with some other types of correlation. but it is
difficult to deduce an obvious analytical expression
for <D(n)».

14998. 15782 566—3A7.

[+] Zyczkowskl K. Quantom Chaes(M ], In: Cerdeirta H A, Ra-
maswamy K. Gutzwiller M C, e af ed. Singapore; World Sci-
entific Pub Co. 1931

{£] TDysenF J. Theory of the Energy Levels of Complex Systems.
I Stansucal{]]. J Math Phys. 1852, 3, 140—147; Dyson F ],
Mehta M L. Staustical Theory of the Energy Levels of Com-
plex Systems. 1T [T, T Math Phys, 1963, 4. 4809— 497.

LlA_ Mehta M L. Random Matnices and the Statistical Theory of
Energy Levels [MJ]. New York. Academic Press. 1957:
Thomas Guhr. Axel Muller-Groeling, Werdenmuller A. Ran
dom Matrix Theories 1 Quantum Physicr: Comon concepts

“I1. MPI preprint H. 1587, 27. 22— 30.

-4
1

Car X. Fluctuanion and Correlations from Nuclear Collision

Geometry in ALICE at LHC[R]. Internal Mete. 1993,

—



http://www.cqvip.com

. 260 - B F # ¥ B i it - BLE

CERN/ALICE/PHY /93— 30.

8] Camp %, Krivine H. Critical Behanour, Fluctuations and B
nite Size Scaling in Nuclear Mulstifragmentation [J]. Nucl
Phys. 1982, AS545: 161c¢ — 172c; Szafer A, Altshuler B L.
Umversal Correlation in the Spectra of Dhsordered Systems
with an Aharonov-Bohm Flux(J]. Phys Rev Lett, 1993, 70,
S587— 590,

[8] Reichl L E. The Transition to Chaos in Conscrvative Classical

Systems; Quantum Manifestations[M]. New York; Springee-
Verlag, 1992,

10] Gutzwiller M C. Chaos in Classical and Quantum Mechanics
[M]. New York: Springer-Verlag. 1950.

Bl #e, ¥

« BEWE: AFEAAPFESWEME (1675019

T

[11] EMUQL Collaboration, Adamovich M 1, Alexandrov ¥ A,

(1z]

Asimov S A, Multiphcities and Baoiduy Densities 1 200 A
GeV 150 Interactions with Emulsion Muclei[J]. Phys Lert,
1585, B201, 397 — 402: Adamovich M 1, Aggarwal M M.,
Andreeva N P, et af. Rapidiy Densities and Their Fluctua-
twns in Central 200 A GeV *5 Interartions with Au and Ag.
Br Nuclei(J]. Phys Lett, 1589, B227: 2B3— 290.

EMUGC] Cellaboration. Adamovich M L. Aggarwal M M. An-
drecva NP, e ul. Lacal Particle Densities and Global Muln-
plicities in Central Heavy lon Interactions at 3. 7, 14, 6. 60 and

202 A GeV{J]. Z Phys, 1992, C56. 508—520.

REEEFMEFNNNERESETFRE
. K B

EPREXERTHBRRT. Bk &R 430079)

B ¥E. WignerDyson B M4 B ER A -—FTEN AP H T EHA XL B EET TR
FRALHETHENLELEAYE, LAN AW A ESE XU LI T EMUOl WERE R, Bt s
HALEFHE CERN/SPS P BNL/AAGS B Z B FEEZS ML~ 4 1.

X RiE: MHIEEED; Wigner Dyson B4 # i TREETFRN



http://www.cqvip.com

