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1 lntr0ducti0n 

0vet the last few years s remarkable series of 

experiments on vapors of rubidiym ，lithium ， 

and sodiumⅢ have led to a renewed jnterest in the 

phenomenon of Bose—Einstein condensation 

(BEC)．The quantum aspects of the vortex system 

in the Bose—-Einstein condensation system is gov—— 

erned by a non·linear Sehr6dinger equation which 

is equivalent to the Gross—Pitaevskii equation 0 4-, 

However there is no satisfactory theory which de— 

scribes the detail topological properties of the vor 

tex，i．e． how one can define 口uantities like the 

densitY of vortices and an associated vortex veloehv 

field． 

In this paper we wish to explore the vortices 

of Bo se—Einstein condensation system in detai】．W e 

will analyze some physically conceivable extensions 

of the usuat Gross—PitaevskLi approximatiou hx 

particular，we will eor?_sider s arbit ra ry non linear 

interactions depending explicitly on (space and 

time) position． By making use Of the 一mapping 

theory，we will study the topological properties of 

the vOrtiees in the (2+ 1)一dimensional Bo se—Ein— 

stein condensation system governed by this gener— 

alized GrOSS—Phaevskii equation． It will be shown 

that the vortices are generated from 圣= 0 and their 

topologicaI charges are quantized under the condi— 

tion D(cblx)≠ 0．At the zero points of the order 

parameter where the corresponding Jaeobian de— 

term[nant D(圣／z)vanishes，the vortex topological 

current bjfureates and the vortices split at such 

point． These conditions give simple rules to con— 

sider the nonlinear behavior in all sort of Bose—Ein— 

stein condensation systems．Furthermore，we dis— 

CUSS the vortex—lines in 3-dimensiona1 Bose～Ein— 

stein condensation and g[ve the sfmilar bifurcation 

results． They will help those experts to find a 

branch point and the concrete branch process in the 

neighborhood of it，and give a deep insight into 

Bose—Einstein condensation system ． 
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2 Vortex Topological Current with 

the Generalized Gross—Pitaevskii 

Equation in (2+ 1)-dimensional 

Space—time 

W e begin with an Landau Ginzburg effective 

action of the form 

s 一 6；70,+
m

a-'
V !一 

J L” j 

)) 一÷ f̂9(t， ) )， 

where 9(t， )is the wave function of the Bose—Ein— 

stein condensate．This action can be associated to a 

standard closed—form equation 

一 V + ( ) 。 ， 

(1) 

which takes the name of the Gross--Pitaevskli equa—． 

tion (sometimes called the nonlinear Schr6dinger 

equation)． In order to discussing Bose—Einstein 

condensates in most general way we consider the 

generalized Gross—Pitaevskii equation 

j 

一 【_' V +V．I( m ． 
(2) 

Herewe replacethe quadratic l̂ (￡， )I：by an ar— 

bitrary nonlinearity，( ‘ )==，(1 l )．We note in 

particular that for two—dimensional systems 

Kolomeisky et al[ have argued that in many exper— 

imentally interesting cases the nonlinearity will be 

cubic or even logarithmic in l I ．At the same time 

％ve permit the nonlinearity function and the confin— 

ins potential to be explicitly space and time depen 

dent，i．e．f=f(x，f，[ ])and V -二V (f。 )． 

According to above equation，one can const ruct the 

vortex current with the condensed~vave function≯ 

，=詈V×V， 
wher 

一  ， 

is iust the current velocity obtalned from Eq．(2)． 

Here one can notice that we didn’t use the usual 

expression 

= Re ． (3) 

The reason is that with the expression (3)one will 

get the velocity 

y— 一堕 e
， 

then the vorticity is always trivial，i．e． 

x V = 0 ． (4) 

But in genera]V × V can be non—zero at a singular 

line．which is found by Onsager and Feynman 一 

and no exalt solution is given for many years． In 

the following we will discuss this question in de 

ta_1． 

It 【s well known that the condensed wave 

function can be looked upon as a section of a 

complex line bundle with base manifold M (in this 

paper M=R @ 尺)．Denoting the condensed wave 

function as 

( )：： ( )+ i· ( ) ， 

where口 ( )and 4 ( ) are two components ol a 

two dimensiona1 vector field 

0 一 ( ， ) 

in the (2+ 1)一dimensional space—time．The current 

can be given 

J 一 ” ， 一 。．1． ) 

where， is the two dimensional unit vector field of 

the complex scalar field： 

∥一 下 ， II JI ， 一 ．㈩  

It is clear that the topological current is identically 

conserved，i．e． 

巩 ， 一 0． (7) 

Substituting (5)into (6)and considering that 

一̈ 一叫 — |' 一 l— 
＼re have 

，一 1n(It f1)． 
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If we def me the vector jacob Lan as 

f 1一 a 
I l 

and by virtue of the Laplacian re Lation in space 

ln( lI)一 2 ) 

we can get a important result 

×y一互占( )D 
． (8) 

l -r J 

which is the rigorous result of F × V． Further— 

more．a —function Iike current can be obtained 

叫詈j )． ㈤ 
Thus we have the im portant relation between the 

topological current and the condensed wave func— 

tion ( ) in the Bose—Einstein condensation sys 

tem ． 

From the Eq． (9)，we can see that topological 

current J does not vanish only at the zero points of 

西 ．i．e． 

“eld as 

一 D ． = 1．2 ) 一 ( ／z) ’ ⋯  ⋯  

where it is assumed that the velocity field is used 

inside expressions muhiplied by the vortices locat— 

ing function． The expressions given by Eq． (13) 

for the velocity of vortices are useful because they 

avoid the problem of having to specify the position 

of vortices explicitly． The positions are implicitly 

determined by the zeros of condensate wave rune 

lion 

Then the vortex three—current J can be writ— 

ten as the form of the current and the density of 

the system of N classical point particles with topo 

Logical charge ：= moving in the (2__1)一di 

mensional space—time 

一 ∑Ⅳ (z—z (f))， 

P一 -二∑ (z一 (f))． (H) 

西 ( ，Y，f)一 0 ， 雪!(z，y， )一 0 · (10) where is the Brouwer degree( 

The solutions of Eqs． (1 0) can be generally ex— 

pressed as 

,2c— xt(t)， — 0)， 

1．2，⋯ ，N ． (n  

一  l{I一±1． 一I￡ 】 一± · 

It is clear to see that Eq． (1 4) shows the move 

m en[of the vortices in space—time． 

whi h pre en Ⅳ r。 “ ( ( 1·2⋯ 一 3 The GeneratiOn and Annihilati0n 

N )or worldlines of N vortices in space—time The 

l。catj。n。f th v。rtex is de cermined bvthe th zer。 of Vortices 

point z “)． 

According to the mapping topological cur— 

rent theory ．one can prove that 

m )一 (=_ zf)· (12) 

where the positive integer is called the Hop／in— 

dex of map 一 >  ． The meaning of is that 

when the point z covers the neighborhood of the ze— 

ro z，once，the vector fietd covers lhe correspond 

ing region卢 times．Foilowing the mapping topo 

logical current theory．we can obtain the general 

velocity of the lth zero 

一  一 II = 1 —a 一 丽  

from which one can identify the vortices velocity 

As being discussed before， the zeros of the 

condensate wave function play an important role 

in studying the vortices in the Gross—Pitaevskii the— 

ory of Bose—Einstein condensation system． Now ． 

we begin studying the properties of the zero points 

(1ocations of vortices)，in other words，the proper— 

ties of the solutions of Eqs． (10)．As we know be 

fore．if the Jacobian 

DI
一 】= ≠。， 

We wdI have the 】solated solutions (1 1)of Eqs． 

(1 0)．However，when the condition(15)fails，the 

usua【implicit function theorem is of no use． The 

above results (1 1) will charge in SOD1e Wav and 

wi1_】ead to the branch proc ess． W e denote one of 
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the zero points as( ‘，z )．If the 3acobian 

D ≠ 。 + ⋯ ) 

we can use the Jacobian D (Cp／x)instead of D @P／ 

) for the purpose of using the implicit function 

theorem． Then we have an unique sol ution of Eqs． 

(10)in the neighborhood of the points 0 ，z ) 

一 t(x ) ． x 一 (z ) ， (1 7) 

with = z( )． And we calI the critical points 

“ ，z )the limit points． In the present case，it is 

easy to know that 

瓤I 一。。一 s， c ．1J， 一百 万 ■ 一 ’  ̈

i．e． II 一 。． 。 ’ ‘， · 一 0‘ 

The Taylor expansion of the solution of Eq． (17) 

at the limit point( ，z )is[ 

一 号 I (一 ) ㈣) 
which is a parabola in the acI_ plane． From Eq 

(19)， we can obtain two solutions 1 ( ) and 

x2 ( )，which give two branch solutions(worldlines 

of vortices)of Eqs．(10)．If[d t／(dx ]I ．̈ > 

0．m  have the branch solutions for ：> +other— 

wise． we have the branch solutions for t< t ． 

These two cases are related to the origia and anni— 

hilation of vortices． 

From Eq．(1 8)．we obtain an important result 

that the velocity of vortices is infinite when they 

are annihilating or generating，which is gained only 

form the topology of the condensate wave rune— 

tion． 

Since the topological charge of vortices is iden— 

tically conserved (7)， the topological charges of 

these two vortices must be opposite at the limit 

point，i．e．， 

fl, rh 一 一 。 ， (2。) 

which shows that 
】

一  

2 
and 研

．

一 一  r 
． 

4 Bifurcation of Vortex Three．．cur— 

i-ent 

For a lim it point， it also requires D ( ／ 

) ， ‘ 、≠ 0． As to a bifurcation point，it must 

satisfy a more com plex condition at the bifurcation 

point (f ，z )： 

， 

which wil1 lead to an important fact that the func— 

tion relationship between and x is not unique in 

the neighborhood of the bifurcation point“ ，z )． 

It is easy to see from equation 

I ．zI)一 等 czz F r -一面 万丌 ■ zz 
which under the restrain (21)directly shows that 

the direction of the integral curve of Eq．(22)is in 

definite+i．e．，the velocity field of vortices is indef— 

inite at the point (t ， )． This is why the very 

point (t’，zf)is caIled a bifurcation point of the 

condensate wave function． 

Next，we will find a simple way to search for 

the different directions of all branch curves (or ve— 

locity field of vortex)at the bifurcation point．As— 

sume that the bifurcation point( ，z )has been 

found from Eqs． (10)and (21)． The Taylor ex— 

pansion of the solution of Eqs． (10)in the neigh— 

borhood of the bifurcation point( ‘，z』)can be cx— 

pressed ast ] 

( 一 j)。+ 2B(x z1 )( 一 f )+ 

C( 一 ) 一 0 ， (23) 

which leads to 

A 1 +2B d x '+c一。， (24) 
and 

C{
—d t I 2B啬+A一0， (25) 

where A ，／3 and C are three parameters． The so]u 

tions of Eq．(24)or Eq．(25)give different direc— 

tlons of the branch curves(worldlines of vortices) 

at the bifurcation point． 

The remainder component dx ／df can be given 

by 

一 厂1 + 
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where partial derivative coefficients and have 

been calculated： ． From these telations we find 

that the values of dx。／d e at the bifurcation point 

(f ， ) are also possible different because (23) 

may give different values of dx ／dt．The above so 

lutions reveal the evolution of vortices．BesIdes the 

encountering of the vortices，i．e．t two vortices en 

counter and then depart at the bifurcation point 

along different branch point．it m ay split into sev 

eral vortices along different branch curves．On the 

contrary，several vortices can merge into onc vor— 

rex at the bifurcation point． The identica】conver 

sation of the topological charge shows the sum of 

the topological charge of final vortices must be 

equal to that of the initia】vortices at the bifurca 

tion point，；．e．， 

∑ ∑ ． 

for fixed J． Furthermore，from above studies we 

see that the generation，annihilation and bifurca 

tion of vortices are not gradual charges，but start 

at a critical value of arguments，i e． a sudden 

charge． 

5 Vortex Topological Current with 

the Generalized Gross—Pitaevskii 

Equation in 3-dimensional Space 

In this section， we will discu}s the vortex 

lines in the 3-dimensional space．Similarly we have 

the generalized Gross—Pitaevskii equatioo． 

孟 ．r) 

一 f_嘉口 + + ．r)． 
(25) 

where r= ( ，y，2)is different from parameter 一 

( ，Y)in the Section 2． W ith the satrle procedure 

the current velocity can be given from above equa 

tion 

y一  业  
I I ， ’ 2 d ’ 

then we can give the intrinsic relation between con— 

densate wave Iunction and the vorticity 

×y：旦 ( ·) ( )Df l
， (27) 

where the vector Jacobians Dt中fz 一 tD t中 f l． 

D UP／x)，D
． ( ／ ))can be defined as 

。 t[ ， 

。， t[ ， 
t[ ： ， 

一  。+ i and ê 一 1，2，3)are the base vect。rs 

in Cartesian coordinate system ． 

From Eq． (27)，we see that the vorticity 口 × 

V is infinitely great at the zero points of the COIl 

densate％vave function，i．e．， 

( ， ，2)： 0 ， ( ， ，#j一 0 ． (28) 

W hen the vector Jacobian D(rP．／x)≠ 0．the solu— 

cions of Eq． (28)are generally expressed as 

一  ( ) ， 3。一 ( ) ， 一 ( ) ， 

k = 1，2⋯ ．，N ， (29] 

which represent N isolated zero lines L (̂ 一 l， 

2⋯ ，Ⅳ )of the condensate wave functi0n． 

W hen the wave function has some isolated 

zero lines (29)，one can get the topological struc— 

tu rc of the vortex lines： 

× 鲁 仉L 一⋯。。， 
where the line integral is taken along the vortex— 

lines．Fhe positive integer口 is the Hopf index and 

一 = 1 is the Brouwer degree of~-mapping． It is 

obvious that Eq． (30)represents N isolated v。 

rex lines of which the k th vortex lines carries 

charge ％ti／m． 

Let be an arbitrary surface and suppose that 

there a re P vortex—lines passing through it
． Ac— 

co rding to (27)，one can prove that 

f lv×V·da：=∑ ，巩， 

which confirms that甲 ×V represents the line den— 

sity of vortex line． ThtlS，the line densitv of v0r 

rex lines × V can be expressed in term s of the 
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condensate wave function (27)． 

6 Bifurcation of Vortex Lines in the 

3-dimensional Space 

As being discussed before， the zeros of the 

condensate wave function play an important role 

in studying the vortex--lines in the Gross—-Pitaevskii 

theory． Now ，we begin studying the properties of 

the zero points (1ocations of vortex—lines)，in other 

words， the properties of the solutions of Eqs． 

(28)．As we know before，if the Jacohian D( ／z) 

≠ 0，we will have the isolated soiutions (29)of 

Eqs． (28)．W hen the condition fails，the above re— 

suits (29)will change in some way It is interest— 

ing to discuss what will happen and what is the 

c0rresp0ndence in physics when D r ／ )： 0 at 

some zero points r萱一 ‘z t ，z 5 of ．W hen 

D( ／ )： 0 at sortie zero points， ( ) ( 。)D( ／ 

z)is indefinite (for d( )d( )is infinitely large 

at these points)． So，the vortieity ls indefinite at 

these points which are called the hifurca rlon 

points． 

According to the 一mapping topological cur— 

rent theory，the Taylor expansion of the solution 

of Eqs．(28)in the neighborhood of the bifurcation 

point n can be generally expressed as 

A(z 一 工 ) + 2B(工一 工 )fz— z )+ 

C(z一 2 ) + 0(fz一 f + Iz一 I )_一0， 

(31) 

which leads to 

f̂塞) +2B警+c一。， (32) 
where A ．B and C are three constants determined 

by the condensate wave function at the bifurcation 

point． The direction of vortex—lines at the bifurca 

tion point is 

一 一 f dx dy 1 1 l五 ，五 ，l 
J ， 

where the second component dy／dz of the direction 

vector m can he given by ：dy／dz= dz／d#+， ， 

in which the partial derivative coefficients and} 

are also determined by the condensate wave func— 

tion at the bifurcation point．The solutions of Eq． 

(32)give the direction m of the zero lines ot the 

condensate wave function The number of vortex— 

lines passing through the bifurcation point is deter— 

mined by the higher terms of the Taylor expansion 

(31)． 

In the case Eq (32)gives two dilierent direc— 

tions of zero lines at the bifurcation point． 

占( )疗(哇 )D( ／ )is indefinite and then the v0r 

ticity is indefinite at the bifurcation point． In this 

case．vortex—lines with two different directions wilI 

pass through the bifurcation points，i．e．，two vor 

tex—lines interseet with two different directions at 

n ． Thus one can see the interesting result that 

when vortex—lines cross，the vector Jaeobian of the 

condensate wave function D(~／x)wil1 vanish． 

In the case Eq f32)gives only one direction 

of zero lines at the bifurcation point，d( )d( ) 

Dt i i、is definite and then vorticity is definite at 

the biturcation point In this case， vortex—lines 

with one direction will pass through the bifurcation 

points．This case also includes two other im portant 

situations． First，one vortex—line splits into two 

vortex lines at the bifurcation point．Second，two 

vortex lines merge into on vortex—llne at the bifur 

cation point— One can see another interesting re— 

sult：when vortex—lines split or merge，the vector 

Jacobfan D( ／z)wil1 vanish． 

The above solution reveal the space bifurca— 

tion structure of the vortex—lines．Besides the in 

tersection of vortex—lines，i．e．two vortex—lines in— 

tersect at the bifurcation point，splitting and mer— 

gence of flux-lines are also ncluded．W hen a muI— 

ticharged vortex lines passes through the bifurca— 

tion poitlt， it may split into two vortex—lines， 

moreover， two vortex—lines can merge into one 

vortex—lines at the bifurcation point．For the diver 

gence of the line densitY of vortex lines is zero，the 

SHill Of the topological charges of final vortex line 

(s)lllUSl he equal to that of the initial vortex line 

【s) at the bifurcation point， i
． e ． ， ∑， 一 

∑ ．Now the topological structure of the vor- 
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tex lines should be written as 

『 ∑ 且 (r一)。<。’， 
X V：< J ∑

， 
， 

趴 r～ h > 。’， 

which is another case (D(中／z)= 0)of Eq．(27)． 

In the above discussions，we consider only the 

case that two vortex—-Lines pass through the bifur—． 

cation point． The configurations in which more 

vortex lines pass through the bifurcation point are 

high—energy states and not stable states，and will 

fall apart as quirk as they form ． However， we 

must point Out that when several(more than two) 

vortex lines cross，split or merge at a certain time 

t ．the branch conditions are still valid．that is， 

D( ／ )} + -)= 0， although these configurations 

are unstable． 
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推广的 Gross—Pitaevskii理论中的涡旋问题 

段 一士，张鹏 鸣 

(兰 州 大学 理论 物 理研 究 所 ．甘肃 兰 州 730000) 

摘 要 ：利用 推广 Gross Pitaevskii方程 ，分别研 究 了(2+ 1)雏 时空和 3维 空间 的 Bose—Einstein凝 

聚体 中涡菔的拓扑结构．这 一推广的方程能够被用于非均匀并且高度非线彤的 Bose—Einstein凝聚 

系 统．利用 中 映 射拓 扑流理 论 ，给 出 了基 于序 参 数 的涡旋速 度场 ，以及该 速 度场 的拓 扑 结构．最 

，后 ，仔 细地探讨 了这两种 Bose Einstein系统 中涡旋 的各种分支条 件． 

关 键 词 ：Gross—Pitaevskii方程 ： 映射拓 流理论 ；守岔 
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