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Abstract; We studied the topological structure of vortex in the Bose-Einstein condensation with a
generalized Gross-Pitaevskii equation in (24 17-dimensional space-time and 3-dimeunsional space.
respectively. Such equation can be used 1n discussing Bose-Einstein condensates in heterogeneous

and highly nonlinear systems. An explicit expression for the vortex velocity [ield as a function of

: the order parameter lield is derived in terms of the ®-mapping theory. and the topological struc-
ture of the velocity field is studied. At last. the branch conditions for generating. annihilating.
crossing, splituing and merging of vortex in two kinds of Bose-Einstein systems are given.
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1 Introduction

Over the last few years a remarkable series of
experiments on vapors of rubidiym™ . lithium®,
and sodium®™ have led to a renewed interest in the
phenomenon of Bose-Einstein  condensatian
(BEC). The quantum aspects of the vortex system
in the Bose-Einstein condensation system is gov-
erned by a non-tinear Schrédinger cquation which
is equivalent to the Gross-Pitaevskii eguation(®-,
However there is no satisfactory theory which de-
scribes the detail topological properties of the vor-
tex, i. e. how one can define guantities like the
density of vortices and an associated vortex velocity
field.

In this paper we wish to explore the vortices
ol Bose-Einstein condensation system in detail, We
will analyze some physically conceiv.ble extensions
of the usual Gross-Pitaevskii approximation. In

particular, we will consider a arbitrary non-linear

interactions depending explicitly on (space and
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time) position. DBy making use of the ®-mapping
theory. we will study the topological properties of
the vortices in the (24 1)-dimensionai Bose-Ein-
stein condensation system governed by this gener-
alized Gross-Pitaevskil equation. It will be shown
that the vortices are generated from ©=0 and their
topological charges are quantized under the condi-
tion N{P/x3# 0. Ax the zero points of the order
parameter © where the corresponding Jacobian de-
terminant £D(@/x ) vanishes, the vortex topological
current bifurcates and the vortices split at such
point. These conditions give simple rules to con-
sider the nonlinear behavior in all sort of Bose-Ein-
stein condensation systems. Furthermore, we dis-
cuss the vortex-lines in 3-dimensional Bose-Ein-
stein condensation and give the similar bifurcation
results. They wili help those experts te find a
branch point and the conerete branch process in the
neighborhood of it, and give a deep insight into

Bouse-Einstein condensation system.
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2  Vortex Topological Current with
the Generalized Gross-Pitaevskii
Equation in (2 + 1)-dimensional

Space-time

We begin with an Landau-Ginzburg effective

action of the form

. o
S =J.dtd3.r(50 Gnd +a‘\7

Ve (X)) — %A]gﬂ(t.xl .

where ¢(7.x) is the wave function of 1the Bose-Ein-
stein condensate. This action can be associated to a

standard closed-form equation
e O
W a‘;&b(f X))

i z '
=~ B 9t 4 Vet + Al | gLx)

2m
(13
which takes the name of the Gross-Pitaevskii equa-
tion (sometimes called the nonlinear Schrodinger
equation). In order to discussing Bose-Einstein
condensates in most general way we consider the

generalized Gross-Pitaevskii equation
R
18 a_t‘;{) (.I 11)

2 '
=|— iv“ + V.. (x} ‘!‘f(&b.lﬁ]]s{)(f--\‘) .

om

2
Here we replace the quadratic Aly (z.x) | by an ar-
bitrary nonlinearity 7 (¢ @)= F(|¢|* ). We note in
particular  that for two-dimensional systems
Kolomeisky et all® have argued that in many exper-
imentally interesting cases the nonlinearity will be
cubic or even logarithmic in |¢ /. At the same time
we permit the nenlinearity function and the confin-
ing potential to be explicitly space and time depen-
dent, i.e. f=Fflx,r.[¢"¢]) and V,,. =V..(z.¥).
According to above equation. one can construct the

vortex current with the condensed wave function ¢
, _ m .

where

iR ¢ Ty — ¢V
2m [¢]*

1s just the current velocity obtained from Eq. (2).

vV=-—

Here one can notice that we didn’t use the usual
exXpression

W = Re*. (3)
The reason is that with the expression (3) one will

get the velocity

v=—"ge,
m
then the vorticity is always trivial , t. e.
¥V ¥ =0. (4>
But in general ¥ X ¥ can be non-zero at a singular

line. which is found by Onsager and Feynman®-

and no exalt solution ts given for many years. In
the {ollowing we will discuss this guestion n de-
tail.

It s well known that the condensed wave
funetion ¢ can be locked upon as a section of a
complex line bundle with base manifold M (in this
paper M=R*() R). Denoting the condensed wave
function ¢ as

¢glx) = &' (x) -} 1P {x) ,
where &' (x) and " (x) are two components of a
two-dimensional vector field
¢ = (P, P
in the (2+1)-dimensional space-time. The current

can be given
A= :)1;5”""5“;,3.:2“3;?1" » pab A =0,1.2, 3}

where »° is the two-dimensional unit vector field of
the complex scalar field,

nﬂ:l,—‘g—T. (@) =T, 2 = 1,2. (6

[t is clear that the topological current is identically

conserved. i.e.

a7 = 0. (7)
Substituting (5) into (6) and considering that
a, ¢ ' 1
a0 = £ — &3, T
S T ] TeT)

we have

' 1 a4
J* = ﬁEF"“Eﬁbav@a‘ fes 5 ﬁlﬂ( ” & “ ).
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If we define the vector Jacobian as
E@D“[ %I = 3, &P

and by virtue of the Laplacian relation in & space

a4 @
_ = ) = 2w (@
5 in¢ || &1l ?d
we can get a impaortant result
v ><V=EathlD‘*'E.|. (81
m T

which is the rigorous result of ¥ = ¥. Further-

more, a o-function like current can be obtained
r=0{2ls0, . 9
X

Thus we have the important relation between the
topological current and the condensed wave func-
tion ¢(x! in the Bose-Einstein condensation sys-
tem.

From the Eq. (9). we can see that topological
current ;* dees not vanish only at the zero points of
D, e

Dilxyw,) =0, DPixr,y.t) =10, (1
The solutions of Egs. (10} can he generally ex-
pressed as
=z l2y, »= v,

f = 1,2, N, (11
which represent N zero points z, () (F=1,2.....
N or warldlines of N vortices in space-time. The
location of {th vortex is derermined bvthe fth zero
point (1.

According to the @-mapping topological cur-
rent theory’J, one can prove that

B

ma‘(z — . (I

M
Sy = E
{=1

where the positive integer f: is called the Hopl in-
dex'®! of map z—>>@. The meaning of & is that
when the point z covers the neighbothood of the ze-
0 z; once ., the vectar field @ covers the correspond-
ing region 3, times. Following the @ mapping topo-
logical current theory. we can ohtain the general
velacity of the {th zero

o d.l',-u _ D‘(@/’I)

(A —Tr'— I.“. o =1

G/ 'F

from which one can identify the vortices velocity

field as

. DD/
RS TT T2 B

where it is assumed that the velocity field is used

=1.2 (13>

inside expressions multiplied by the vortices locat-
ing & function. The expressions given by Eq. (13}
for the velocity of vortices are useful because they
avuid the problem of having to specify the position
of vortices explieitly. The paositions are implicitly
determined by the zeros of condensate wave fune-
tien.

Then the vartex three-current j* can be writ-
ten as the form of the current and the density of
the system of N classical point particles with topo-
logical charge W, == 8, moving in the (2 1)-di-
mensional space-time

hl
i= 2 W, 8z — G0,

I=1

N
p= 7= 2 Wiz — 7,0t . (14)
=
where #,is the Brouwer degree™-.
_ D(d/x) .
7= [D(Q/IJI ]:,. —i 1.

It is clear to see that Eq. (14) shows the move-

ment af the vortices in space-time.

3 The Generation and Annihilation
of Vortices

As being discussed before, the zeros of the
condensate wave function ¥ play an impartant role
in studying the vortices in the Gross-Pitaevskii the-
ory of Bose-Einstein condensation system. Now,
we begin studying the properties of the zero points
{locations of vortices ). in other words . the proper-
ties of the solutions of Eqs. (10!, As we know be-
fire, il the Jacobian
fd g,y

Il rei TRl R s

D
we will have the isolated solutions (11) of Egs.
(1. However, when the condition (15} fails, the
usual implicit function theorem is of no use. The
above results (11! will charge in some wayv and

will lead to the branch process. We denote gne of
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the zero points as {¢t* . z:). If the Jacobian x) 4 0. As to a bifurcation peint, it must

we can use the Jacobian D'(@/x) instead of D{&/
x) for the purpose of using the implicit function
theorem. Then we have an unique solution of Eqgs.
(10) in the neighborhood of the points (2* ., z,)
t=t{z") , x*=x{(=", an
with +* =¢{(z'). And we call the critical pcints
{t"+ z,) the limit points. In the present case, it is
easy to know that
. TSI
%lfJ'.:ﬂ:DD:Q;j:Il;_I L ===, (18)

v 3}‘

) dr
e, d__r}_llr'-‘."zo'

The Taylor expansion of the solution of Eq. (171
at the limit point {¢" . z,) isl’"

. T1 dt |
T2 oaxhE'

which 1s a parabola in the r'-t plane. From Eqg.

t— 1 coptxt — 2w

(1%), we can obtain two solutions ' (¢? and
x;'{t}, which give two branch solutionstworldlines
of vortices) of Eqs. (10> If [d%/(d='»]]o- . .. >
0. we have the branch solutions for t™>¢", other-
wise, we have the branch solutions for ¢ <Z:s",
These twao cases are related to the origin and anni-
hilation of voruces.

From Eqg. {I8). we obtain an important result
that the velocity of vortices 1s infinite when they
are annihilating or generating, which is gained only
form the topology of the condensate wave func-
tion,

Since the topological charge of vortices is iden-
tically conserved (7}, the topological charges of
these two vortices must be opposite at the limit
point, L. e. ,

.811’?5 = Bi:\l?li . (20
which shows that ,&] =f312 and Po=—1,

4 Bifurcation of Vortex Three-cur-
rent

For a Hmit point, it alsc requires D' ( P/

satisfy a more complex condition at the bifurcation
point (" Z,0:
EE
. &b (z1)
]Dll ;] |(c'.:_,) =40
which will lead to an important fact that the fune-
tion relationship between ¢ and x' is not unique in
the neighborhood of the bifurcation point (¢*, z,>.
It 15 easy to see from equaticn

da DD/ |0 o,
E'"'-%‘ - D@/

(z2)

"
which under the restrain (21) directly shows that
the direction of the integral curve of Eq. (22 is 1n-
defimite. i.e. , the velocity field of vortires is indef-
inite at the point {z", z,). This is why the very
point (7", z;? is called a bifurcation point of the
condensate wave function.

Next, we will {ind a simple way to search for
the different directions of all branch curves (ar ve-
lacity field of vortex) at the bifurcation point. As-
sume that the bifurcation point (¢° . z,) has been
found from Eqs. (I10) and ¢(21). The Taylor ex-
pansion of the solution of Eqs. (I0) in the neigh-
borhood of the bifurcation point {¢* » z;) can be £x-
pressed as/’!

Alrt — =t 4+ 2B(x —2DG& — 1t +

Ci@—et=1n, {23
which leads 10
’ 1Y 2 dl
Al T re=0. v
and
o de de N
L|‘F}- +2Bi5+A=0, (25)

where A, 8 and C are three parameters. The solu-
tions of Eq. (247 or Eq. (25) give different direc-
tions of the branch curves {worldlines of voruces)
at the bifurcation point.

The remainder component dz®/d¢ can be given
by

dx* L dx! .
4 St
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where partial derivative coeflicients 7 and /7 have
been calculated-). From these relatiuns we find
that the values of dz®/dr at the byfurcation point
(", z,) arc also possible different becanse (23
may give different values of dr'/dr. The above so-
lutions reveal the evolution of vortices. Besides the
encountering of the vortices, i.e. « 1wo vortices en-
counter and then depart at the hifurcation point
along different branch point. it mav split into sev-
eral vortices along different branch curves. On the
contrary, several vortices can merge mio onc vor-
tex at the bifurcation point. The identical conver-
sation of the topological charge shaws the sum of
the topological charge of final vortices must be
equal to that of the initial voruces at the bifurca-
tion point. 1. e. .
Z‘EJrJ?fl - Eﬁ-'.??'. N
T s

for fixed ;. Furthermore. from abuove studies we
sce that the generation. annihilatiou and bilurca-
tion of vortices are not gradual charges, but stare
at a critical value of arguments. 1. e. a =udden

charge.

5 Vortex Topological Current with
the Generalized Gross-Pitaevskii
Equation in 3-dimensional Space
In this section, we will discu~s the vortex

lines in the 3-dimensional space. Similarly we have

the generalized Gross-Pitaevsku equation
., 3
i H—rgﬁ'{f o’

— I_ it 4 FITES I 4
= o VTt Vealrd 4 19 r;ﬂ)“lw(r.rl .

(261
where F=(r.y,z) is different from parameter x=
{x, ¥} in the Section 2. With the same procedurc
the current velocity can be given frum above equa-
tion

BTy — g T
2m l]-

VvV ——

then we can give the intrinsic relation between con-

densate wave funcirion and the vorticity

7 V= %3@1)3@%0{ %} .o
where the vector Jacobians D(®/ r)=(D (D/r).
Da@ir) D (P/xr)) can be deflined as

7.8 2.0

a8 g’

. 2.8 2.0
D, 2| = det .
L

i a2, a,d¢
y 2,1 a.P! "
D:I. ;) = dex [ar@z J_;@Z.‘ f

g=9' +id" and e, (A=1,2,3) are the base vectors
in Cartesian coordinate system.
From Eq. (27). we see that the vorticity 7 =
V 1= infinitely great at the zero points of the con-
densate wave function, i.e. .
D' (riv,zr =0, DPUr,y.c)=u. (28
When the vector Jacobian D{(®/z)+ 0, the solu-
tians af Eg. (28) are generally expressed as
£ =T 0 = y(5) . oz o= =z,(x) .
B=1.2.....M, (29)
which represent N isclated zero lines £, (4 = |,
Z4. ..+ N of the condensate wave function.
When the wave function ¢ has some isolated
zero lines (29),une can get the topological struc-

rure: of the vortex lines .

BEoaon s
7 ooy =L N ﬁ*'l:h'[‘ dr,é'(r — r,) . (307
'LJ'

- |
m i)

where the line integral is taken along the vortex-
Imes. The positive integer 8; is the Hopf index and
%:= =1 i~ the Brouwer degree of @-mapping. Tt is
ohvious that Eq. (30) represents & isoclated vor-
tex lines of which the %-th vortex-lines carries
charge gk /m.

l.et X be an arbitrary surface and suppose that
there are P vartex-lines passing through it. Ac-

cording 1o (27). one van prove that
r [}
‘_'\T'" Ve do = SISI??:
iz Py
which confirms that %7 > ¥V represents the line den-
sity ol vortex-line. Thus, the line density of vor-

tex-lines % ¥ V¥V can be expressed in terms of the
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condensate wave {unction (27).

6 Bifurcation of Vortex Lines in the
3-dimensional Space

As being discussed before. the zeros of the
condensate wave function ¢ play an important role
in studying the vortex-lines in the Gruss-Pitaevskiy
theory. Now, we begin studying the properties of
the zero points {locations of wortex-lines). in other
words, the properties of the sclutiuns of Egs.
(283, As we know before, if the Jacobian D{(P/ )
#= 0. we will have the isolated solutions (29, of
Eqs. (28). When the condition {ails. the above re-
sults (29) will change in some way. It is interest-
ing ta discuss what will happen and what is the
correspondence in physics when Dt @/ r) = 01 at
some zerc points ri= (x,» ¥+ =, - of ¢ . When
D(P/x)=10 at some zero points. 5(PIF(PHID(D/
) is indefinite (for &(P')&(P*) is inlinitely large
at these points). So, the vorticity is indefinite at
these points which are called the bifurcation
points,

According to the $-mapping topological cur-
rent theory, the Taylor expansion of the solution
of Eqs. (28) in the neighborhooed of the bifurcation
point r,* can be generally expressed as'™

Alr — x/ ¥ 4 2B(x — x7 (2 — 2/ ) +
Cler — 24+ 0z — = [+ e — =7 ) =0.

{21
which leads to
A[:%EJE+ZB%§+C20. 132)
where 4. B and C are three constants determined
by the condensate wave function at the bifurcation
point, The direction of vortex-lines at the bifurca-
tion point is
_(de dv
| dz"dz"") "
where the second component dv/dz af the direction
vector m can be given by'-; dy/dz= /*dx/d=+ 17,
in which the partial derivative coefficients £ and #:

are also determined by the condensate wave {unc-

o I

tion at the bifurcation peint. The solutions of Eq.
i32) give the direction m of the zero lines of the
condensate wave function. The number of vortex-
linex passing through the bifurcauon point is deter-
mined by the higher terms of the Taylor expansion
131).

In the case Eq. 132) gives two different direc-
tions of zero lines at the bifurcation point,
1P 351D )D(P/x) is indefinite and then the vor-
ticity is indefinite at the bifurcatien point. In this
case. vortex-lines with two different directions will
pass through the bifurcation points. i.e. , 1wo vor-
tex-lines intersect with two different directicns at
r,”. Thus one can see the interesting result that
when vortex-lines cross, the vector Jacobian of the
condensate wave {unction D{P/r) will vanish,

In the case Eq. (32) gives only one direction
of zero lines at the bifurcation point, §(®")§(H*)
Dt®/r) is definite and then worticity is definite at
the bifurcation point. In this case. vortex-lines
with one direction will pass through the bifurcation
points, This case also includes two other important
situations. First, one vortex-line splits into two
vortex-hnes at the bifurcation point. Second. two
vourtex-lines merge inta on vortex-line at the bifur-
cation point. ne can see another interesting re-
sult: when vortex-lines split or merge. the vector
Jacabian D(D/x) will vanish.

The above solution reveal the space bifurca-
ton structure of the vortex-lines, Besides the in-
tersection of vortex-lines, i.e. two vortex-lines in-
tersect at the bifurcation point. splitting and mer-
gence of flux-lines are also included. When a mul-
ticharged vortex-lines passes through the bifurca-
tion pamt. it may split mto 1wo vortex-lines,
morecvers two vortex-lines can merge into one
vortex-lines ar the bifurcation point. For the diver-
gence uf the line density of vortex-lines is zeru, the
sum ol the topological charges of final vortex-line
(=) must be equal to that of the initial vortex-line
= at the bifurcation point, 1. e.. 2,87 =

>, A.7%. Now the topological structure of the vor-
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tex lines should be written as

) A .
po E,B,?},J‘Ljdr,ﬁ (r—r) =<z,
VXV = -
;E‘fﬁ‘p}f L{dr_.rﬁj(r — ) ozt
which is another case (D(®/r)=10) of Eq. (27).
In the above discussions. we consider only the

case that two vortex-lines pass through the fur-

cation pomt. The configurations in which mare
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