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Abstract: By a generalized version of AGS reduction procedure we show that the forms of

quantum dynamics at different strata are the same. This is the self-similarity of quantum

dynamics.
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1 Introduction

We often need to apply the quantum dynamics

at different strata, for examples, apply it to
atoms, to the electrons in an atom, to nuclei, to
nucleons in a nucleus, and so on. Sometimes we
even need to consider a mixed system of objects
from different strata. Examples are systems of
atoms and electrons, systems of nuclei and
nucleons, and systems of hadrons and quarks. We
may also need to ignore something and concentrate
our attention to other things. For example, in the
nuclear reaction theory we would ignore closed
problems, a set of

channels. In many-body

specially  chosen  particles and  elementary

excitations is considered instead of original
elementary particles composing the system. In all
of these cases people always assume that the
quantum dynamics takes the same form. However
this has not been proven in general from the first
principle.

In the following, using the generalized AGS

"% we prove the statement of

reduction procedure'’
self-similarity for quantum dynamics: The same
quantum dynamics may be used to a system of
elementary objects as well as to objects, their
bound or resonant

states, and elementary
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excitations chosen from this system. We call the

system composed of elementary objects the

original, call the system composed of chosen
objects from the original system the reduced, and
call the procedure from the quantum dynamics of
original system to the quantum dynamics of
reduced system the reduction. The reduction
procedure also give a derivation of the Hamiltonian
of the reduced system from that of the original
system.

In Sec. 2, we review the formal theory for
collisions as a fundamental form of quantum

In Sec. 3,

reduction procedure and deduce the quantum

dynamics. we generalize the AGS

dynamics for the reduced system by it. Sec. 4 is a

discussion.

2 Formal Theory for Collision

Consider the collision processes

b+ B

a+ A= |c+ C

in the original system, in which a and A are

objects in the ingoing channel, while b and B or ¢
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and C and so on are those in outgoing channels. In
these channels, objects are considered as to be
composed of the elementary objects in the original
system. We call s+ S the s channel, either ingoing
or outgoing. Define the Hamiltonian of the s

channel by
H.= Ho+ H. . (1)

H o is the free Hamiltonian of the system. H.is the
interaction Hamiltonian in the s channel, including
the interaction forming the s and S objects. The
interaction distorting the wave function of the
relative motion between these objects, or a part of
it, may also be included in H.. The total

Hamiltonian of the system is
H=H.+ Hs. (2)

with the definition Hs= H — H.. The Lippmann-

Schwinger equations in the s channel are

1
E‘wr_ H-i iE

|sni)=|sn)+ H#sni>,

(3)
in which | sn? is the nth eigenstate of H . with the
eigenenergy FEsu, | sn+ ) and | sn— ) are the in-and

out-eigenstates of H respectively with the same

eigenenergy Es.. The Transition amplitude
between states | an.? and | by ) is' "
bny| Una( Ean, + 1€ )| ana?
= (bn.hl Hr | ana. + )
= G- |Hdan) , (4)
with
Un(Z) == (1= &) (Ho- Z) + H -

Ho— Huo+ OuH.- HiG(Z)Hz,  (5)

G(Z)= (H - 2)"
= 8uGu(Z) = G2 Un(Z)GC(Z) ,  (6)

H=H- H, . (8)

The S-matrix element for the transition is

(bm,l Sl an.) = OwlOun, — 2TiO(Ewm, — Ew) *
br| Una( Ean, + 1€ )| ana) . (9)

The collision theory is not only for the collision
problem, but also for the bound state problem. (5
~ 9) show that the resolvent G, the transition
amplitude U and the scattering matrix S as
functions of Z have the same poles, and their real
poles Z = E. form a discrete spectrum of the
system, therefore correspond to its bound states.
At the pole, the first term on the right hand side of
(3) is negligible in comparison with the second
term. The solution | n ) of the Lippmann—
Schwinger equation (3) at the pole E. is therefore
independent of any channel. A stationary state
without any incoming and outgoing channel is a
bound state. The formal theory for collision is also
a form of complete description for quantum

dynamics.

3 Generalized AGS Reduction and
the Self-similarity of Quantum
Dynamics

A channel means a partition of the system.
The theory described in the last section is quite
general, since there may be several bound parts in
s+ S . For an N body s channel with N bound
objects s1,82,...,8v, we have s+ S= si1+ s2+ ...
+ sv. s+ S may also be a bound object, in this case
we call it a one-body s channel. Corresponding to
the channel s there is also a partition(2) of the
Hamiltonian. One may sum up the interaction
Hamiltonians H. of all channels and define a

remainder

Hi=H - ) H. (10)

to be the interaction Hamiltonian of a fictitious r

channel. The corresponding channel Hamiltonian
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H.= Ho+ H. (11) Ri=—- 8uT. . (22)
may have no any meaningful channel eigenstate. Consider the partition
Now let us rewrite( 10) in the form T.= T.% + T. s (23)
, E , in which
H = : 1., (12) T.%(7) = - Z nl sny ZMu(Z) $sng Zl , (24)
with the understanding that H . has been included ,
T.= T.- 1.7 . (25)

in the sum on the right. With this relation, we
may apply the AGS procedure' " to the system.
Define the T operator of the s channel by

T(Z)= H.- H.G(Z) H. . (13)

It is a function of the complex variable Z and
satisfies equations

TAZ)Go(Z) = H.G(Z) (14
Go(Z)TA(Z) = G(Z)H I’
in which

Go(Z) = (Ho- Z)"" (15)

is the free resolvent for the system. Using (6),
(7), and (14) we obtain

YTV Gy = Dy Hy Gy UGGy

bh# b bh# b

= H.+ Hyo- H - 8.Hy+ HiGH: . (16)
Comparing this equation with(5), we see

Un(Z) = - (1= &) (Ho- Z) -
Y TV(Z2) Go(Z) Uvu( Z) (17)

bh# b

Similarly we have

Un(Z) = = (1= &) (Ho- Z) -
DU (2) Gl 2) T (Z) . (18)

a# a

These two equations may be written in the matrix

form
F=W- WRF and F= W - FRW (19)
respectively, with the matrix elements being
defined by

Fb:l = GUU[JHGU » (20)

Wiw=- (1= &)GCo , (21)

The partition may be totally arbitrary. In our case

we choose the states in its separable part(24) to be
|sn,; Z)= Gn_](Z)l.m), (26)
Gn; Z| = Gn| G3'(Z) . (27)

For a multi-body channel, n is a set of quantum
numbers characterizing the inner motion in each
bound object and the relative motion between these
objects. For an one-body channel, it characterizes
the compound state of the system. If the compound
state is near a stationary state, and therefore has a
long lifetime, we call it a resonant state. Which
states should be included in the sum on the right of
(24) is

consideration and by the requirement of smallness

determined by the problem under

of the perturbation T.to make the solution as easy
as possible. Substituting T for T in( 17) and( 18)

we obtain

Un(Z) = - (1= &) (Ho- Z) -
D TV(Z2) Go(Z) Unu( Z) (28)

Un(Z) == (1= 8)(Ho- Z) -
YU (Z) 6o Z)TL(Z) . (29)

aFa

This may be regarded as the definition for Ut
Likewise, defining

F;iil = GUU;HIGU and R;nu = - amT:l - (30)

we may write these equations in the matrix form
F=W- WRF
F=W-FRW

We also have the partition

(31)
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R=R”+ R with RI?=- 8T . (32 T=V-TG(Z)V, (42)
Multiplying two sides of the first equation in(31) of the multichannel  Lippmann-Schwinger
by 1= R'""F from right. and defining equation. Go ( Z) is the free resolvent of the

F=F(1- ROF), (33)
we get

F=W- WR"F- WR T . (34)

It means, if F= F, it is if F satisfies

F=F - FR"F, (35)

the first equation in(19) is satisfied. On the other
hand, if that equation is satisfied, then by(34) we
have

AF = - WR AF (36)

for AF= F- F. This is the homogeneous equation
of the first linear equation of (31). Suppose that
equation is soluble, this equation can have trivial
solution AF= 0 only. It is F= F, and (35) is
satisfied. The equivalence of the equation (35) and
the first equation in (19) is therefore proven. In
the same way, one may prove the equivalence of
the equation

F=F - FROF, (37)

and the second equation in( 19).

A crucial point of the AGS procedure is that
the equations (35) and (37) may be closed by the
states |sn> chosen in the definition (24) ~ (27) for
7.'"”. Defining

T(Z) nyan, = $brn; Z| F;,ul ans; Z)

= | Uni(2)] ana? , (38)

V(Z) nyan, = $bnn; Zl F;ml ana; Z)
= G| U(2)] ana) , (39)

GO( Z) bny ., an, = tmiﬂ( Z) 6bﬂdahuu » ( 40)

we may write them respectively in the matrix forms

T'=V-VG(Z) T, (41)

equivalent multi-channel problem. Here free means

without  coupling  between channels. The
consideration of effects of the channel Hamiltonian
H - for chosen channels has already been completed
in Go. The coupling between channels is included
in the effective interaction V. The resultant
transition operator is T, it has right relation with
the S matrix of the original problem as shown by
(38) and (9).

Lippmann-Schwinger equation is equivalent to
the Schrodinger equation with suitable boundary

condition. The Hamiltonian is defined by

H=Ho+ V, (43)

Ho= Go '(Z) + Z. (44)

Definition(7) shows that the eigenvalue E of H «is
a singular point of the function G (Z), and
therefore, according to( 13), is a singular point of

T«(Z). Near the singular point Z= E.,

T(Z) =~ - H;lsn)ﬁl__J(can; . (45)

H;lsn)= (H.- Ho)lsn)
(Ew— Ho)|sn)
=~ (/- Hu)lsn)

=~ Go '(Z)|sn). (46)
It shows we may set
—1
t.‘ﬂ(Z) = E.‘" _ Z (4?)

in(24). The free Hamiltonian H o defined by(44),
(40) and (47)

elements are eigenenergies Eu of the channels. Ho

is diagonal, and the diagonal

operates separately in each channel. In the s
channel it reduces to the channel Hamiltonian H ..
For a given energy E, there may be various N -

body channel eigenstates with N = 1,2, 3,... of
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the various channel Hamiltonians. Some of the
one-body channel states may be identified to be the
resonant states. Other channels with N > 1 are
open channels at this energy. The state vectors are
column vectors, each row of them corresponds to
an open N-body or a one-body channel. These
column vectors open a working state space for the
equivalent theory. Their scalar product may be
defined as a sum of scalar products between
corresponding channel state vectors. Defining the
orthogonality of two states by its zero scalar
product as usual, states in different channels are
then orthogonal to each other in the working
space. It means the open channel states are
orthogonal to the resonant states in this working
space. Since the channel eigenstates form a
complete orthonormal set of that channel, the
eigenvectors of the free Hamiltonian Ho form a
complete orthonormal set for the working space of
the equivalent theory. The quantum dynamics of
the original system now is reduced to the quantum
dynamics of a system of some chosen objects

composed of elementary objects in the original
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system. The forms of the quantum dynamics for
both the original system and the reduced system
are the same. It is the self-similarity of the

quantum dynamics.

4 Discussion

The above formalism is solely based on the
formal quantum theory without any further
assumption, and is therefore formally exact and
complete. The Hamiltonian is not specified. It may
be relativistic or nonrelativistic. For a nuclear
system, it may contain or not contain degrees of
freedom other than nucleons, may be applied at the
hadron level or at the quark—gluon level or on
something hybrid. It therefore may, in principle,
be applied to the high energy and/or heavy ion
This has

motivations for developing such a formalism. The

nuclear reaction. been one of the
forma-lism is developed in the working space. The
states in this space may be chosen according to the
problem in hand. This makes the formalism highly
flexible. One may use this flexibility to join the
general theory with various model theories and

develop new models in possible new cases.
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