高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GPU加速的质子调强放疗鲁棒优化器

徐遥 裴曦 刘红东 霍万里 周解平 徐榭

徐遥, 裴曦, 刘红东, 霍万里, 周解平, 徐榭. 基于GPU加速的质子调强放疗鲁棒优化器[J]. 原子核物理评论, 2019, 36(1): 96-103. doi: 10.11804/NuclPhysRev.36.01.096
引用本文: 徐遥, 裴曦, 刘红东, 霍万里, 周解平, 徐榭. 基于GPU加速的质子调强放疗鲁棒优化器[J]. 原子核物理评论, 2019, 36(1): 96-103. doi: 10.11804/NuclPhysRev.36.01.096
XU Yao, PEI Xi, LIU Hongdong, HUO Wanli, ZHOU Jieping, XU Xie. Robust Optimizer for Intensity Modulated Proton Therapy based on GPU[J]. Nuclear Physics Review, 2019, 36(1): 96-103. doi: 10.11804/NuclPhysRev.36.01.096
Citation: XU Yao, PEI Xi, LIU Hongdong, HUO Wanli, ZHOU Jieping, XU Xie. Robust Optimizer for Intensity Modulated Proton Therapy based on GPU[J]. Nuclear Physics Review, 2019, 36(1): 96-103. doi: 10.11804/NuclPhysRev.36.01.096

基于GPU加速的质子调强放疗鲁棒优化器

doi: 10.11804/NuclPhysRev.36.01.096
基金项目: 国家重点研发计划资助项目(2017YFC0107500);国家自然科学基金资助项目(11575180);安徽省重点研究与开发计划项目(1804a09020039);安徽省自然科学基金项目(1908085MA27)
详细信息
    作者简介:

    徐遥(1993-),男,浙江杭州人,在读硕士研究生,从事医学物理研究;E-mail:yaoxu@mail.ustc.edu.cn

    通讯作者: 裴曦,E-mail:xpei@ustc.edu.cn
  • 中图分类号: R73

Robust Optimizer for Intensity Modulated Proton Therapy based on GPU

Funds: National Key R&D Program of China (2017YFC0107500); National Natural Science Foundation of China (11575180); Anhui Provincial Key R&D Program (1804a09020039); Anhui Provincial Natural Science Foundation (1908085MA27)
  • 摘要: 开发一种基于图形处理器(GPU)加速的质子调强放疗鲁棒优化器,用于减小质子束射程不确定性和靶区定位偏差对质子放疗的影响。建立的鲁棒优化模型使用的目标函数包括9种边界剂量目标,分别是:无偏差情况、2种射程偏差(偏长与偏短)、6种摆位不确定性(前后、侧向、上下入射方向各2种正负偏差)。首先靶区和危及器官的剂量贡献矩阵使用笔形束算法计算得到,然后使用共轭梯度法优化目标函数让其满足约束条件,这两部分均采用GPU加速。头颈部、肺部和前列腺三个临床病例被用来检测本优化器的性能表现。与传统基于计划靶区(PTV)的质子调强放疗计划相比,鲁棒优化器能够优化出对射程不确定性和摆位误差更加不敏感的治疗计划,让靶区实现了高剂量均匀性的同时危及器官(OARs)也得到了更好的保护。经过100次迭代,三个病例的优化时间均在10 s左右。该结果证明了基于GPU加速的质子调强放疗鲁棒优化器能够在短时间内设计出高鲁棒性的质子治疗计划,从而提高质子放射治疗的可靠性。


    This paper describes the development of a fast robust optimization tool that takes advantage of the GPU technologies. The objective function of the robust optimization model considered nine boundary dose distributions——two for ±range uncertainties, six for ±set-up uncertainties along anteroposterior (A-P), lateral (R-L) and superior{inferior (S-I) directions, and one for nominal situation. The nine boundary influence matrices were calculated using an in-house dose engine for proton pencil beams of a finite size, while the conjugate gradient method was applied to minimize the objective function. The GPU platform was adopted to accelerate both the proton dose calculation algorithm and the conjugate gradient method. Three clinical cases-one head and neck cancer case, one lung cancer case and one prostate cancer case-were investigated to demonstrate the clinical significance of the proposed robust optimizer. Compared with conventional planning target volume (PTV) based IMPT plans, the proposed method was found to be conducive in designing robust treatment plans that were less sensitive to range and setup uncertainties. The three cases showed that targets could achieve high dose uniformity while organs at risks (OARs) were under better protection against setup and range errors. The run times for the three cases were around 10 s for 100 iterations. The GPU-based fast robust optimizer developed in this study can serve to improve the reliability of traditional proton treatment planning by achieving a high level of robustness in a much shorter time.
  • [1] LOMAX A. Physics in Medicine and Biology, 1999, 44(1):185.
    [2] ARES C, HUG E B, LOMAX A J et al. International Journal of Radiation Oncology Biology Physics, 2009, 75(4):1111.
    [3] LOMAX A J, BÖRINGER T, BOLSI A, et al. Medical Physics, 2004, 31(11):3150.
    [4] UNKELBACH J, BORTFELD T, MARTIN B C, et al. Medical Physics, 2008, 36(1):149.
    [5] PARODI K, ENGHARDT W, HABERER T. Physics in Medicine and Biology, 2002, 47(1):21.
    [6] MEYER J, BLUETT J, AMOS R, et al. International Journal of Radiation Oncology Biology Physics, 2010, 78(2):428.
    [7] PFLUGFELDER D, WILKENS J J, OELFKE U. Physics in Medicine and Biology, 2008, 53(6):1689.
    [8] FREDRIKSSON A, FORSGREN A, HÅRDEMARK B. Medical Physics, 2011, 38(3):1672.
    [9] LI H, ZHANG X, PARK P, et al. Radiotherapy and Oncology, 2015, 114(3):367.
    [10] FREDRIKSSON A, BOKRANTZ R. Medical Physics, 2014, 41:081701.
    [11] ZAGHIAN M, CAO W, LIU W, et al. Journal of Applied Clinical Medical Physics, 2017, 18(2):15.
    [12] AN Y, LIANG J, SCHILD S E, et al. Medical Physics, 2017, 44(1):28.
    [13] HONG L, GOITEIN M, BUCCIOLINI M, et al. Physics in Medicine & Biology, 1996, 41(8):1305.
    [14] GU X, CHOI D, MEN C, et al. Physics in Medicine and Biology, 2009, 54(20):6287.
    [15] OELFKE U, BORTFELD T. Medical Dosimetry, 2001, 26(2):113.
    [16] POLYAK B T. USSR Computational Mathematics and Mathematical Physics, 1969, 9(4):94.
    [17] BELL N, GARLAND M. Efficient sparse matrix-vector multiplication on CUDA[R]. Nvidia Technical Report NVR-2008-004, Nvidia Corporation, 2008.
    [18] LIU W, LI Y, LI X et al. Medical Physics, 2012, 39:3089.
  • 加载中
计量
  • 文章访问数:  495
  • HTML全文浏览量:  47
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-12
  • 修回日期:  2019-02-26
  • 刊出日期:  2019-03-20

基于GPU加速的质子调强放疗鲁棒优化器

doi: 10.11804/NuclPhysRev.36.01.096
    基金项目:  国家重点研发计划资助项目(2017YFC0107500);国家自然科学基金资助项目(11575180);安徽省重点研究与开发计划项目(1804a09020039);安徽省自然科学基金项目(1908085MA27)
    作者简介:

    徐遥(1993-),男,浙江杭州人,在读硕士研究生,从事医学物理研究;E-mail:yaoxu@mail.ustc.edu.cn

    通讯作者: 裴曦,E-mail:xpei@ustc.edu.cn
  • 中图分类号: R73

摘要: 开发一种基于图形处理器(GPU)加速的质子调强放疗鲁棒优化器,用于减小质子束射程不确定性和靶区定位偏差对质子放疗的影响。建立的鲁棒优化模型使用的目标函数包括9种边界剂量目标,分别是:无偏差情况、2种射程偏差(偏长与偏短)、6种摆位不确定性(前后、侧向、上下入射方向各2种正负偏差)。首先靶区和危及器官的剂量贡献矩阵使用笔形束算法计算得到,然后使用共轭梯度法优化目标函数让其满足约束条件,这两部分均采用GPU加速。头颈部、肺部和前列腺三个临床病例被用来检测本优化器的性能表现。与传统基于计划靶区(PTV)的质子调强放疗计划相比,鲁棒优化器能够优化出对射程不确定性和摆位误差更加不敏感的治疗计划,让靶区实现了高剂量均匀性的同时危及器官(OARs)也得到了更好的保护。经过100次迭代,三个病例的优化时间均在10 s左右。该结果证明了基于GPU加速的质子调强放疗鲁棒优化器能够在短时间内设计出高鲁棒性的质子治疗计划,从而提高质子放射治疗的可靠性。


This paper describes the development of a fast robust optimization tool that takes advantage of the GPU technologies. The objective function of the robust optimization model considered nine boundary dose distributions——two for ±range uncertainties, six for ±set-up uncertainties along anteroposterior (A-P), lateral (R-L) and superior{inferior (S-I) directions, and one for nominal situation. The nine boundary influence matrices were calculated using an in-house dose engine for proton pencil beams of a finite size, while the conjugate gradient method was applied to minimize the objective function. The GPU platform was adopted to accelerate both the proton dose calculation algorithm and the conjugate gradient method. Three clinical cases-one head and neck cancer case, one lung cancer case and one prostate cancer case-were investigated to demonstrate the clinical significance of the proposed robust optimizer. Compared with conventional planning target volume (PTV) based IMPT plans, the proposed method was found to be conducive in designing robust treatment plans that were less sensitive to range and setup uncertainties. The three cases showed that targets could achieve high dose uniformity while organs at risks (OARs) were under better protection against setup and range errors. The run times for the three cases were around 10 s for 100 iterations. The GPU-based fast robust optimizer developed in this study can serve to improve the reliability of traditional proton treatment planning by achieving a high level of robustness in a much shorter time.

English Abstract

徐遥, 裴曦, 刘红东, 霍万里, 周解平, 徐榭. 基于GPU加速的质子调强放疗鲁棒优化器[J]. 原子核物理评论, 2019, 36(1): 96-103. doi: 10.11804/NuclPhysRev.36.01.096
引用本文: 徐遥, 裴曦, 刘红东, 霍万里, 周解平, 徐榭. 基于GPU加速的质子调强放疗鲁棒优化器[J]. 原子核物理评论, 2019, 36(1): 96-103. doi: 10.11804/NuclPhysRev.36.01.096
XU Yao, PEI Xi, LIU Hongdong, HUO Wanli, ZHOU Jieping, XU Xie. Robust Optimizer for Intensity Modulated Proton Therapy based on GPU[J]. Nuclear Physics Review, 2019, 36(1): 96-103. doi: 10.11804/NuclPhysRev.36.01.096
Citation: XU Yao, PEI Xi, LIU Hongdong, HUO Wanli, ZHOU Jieping, XU Xie. Robust Optimizer for Intensity Modulated Proton Therapy based on GPU[J]. Nuclear Physics Review, 2019, 36(1): 96-103. doi: 10.11804/NuclPhysRev.36.01.096
参考文献 (18)

目录

    /

    返回文章
    返回