高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原子发射光谱的TiC等离子体沉积诊断

周晗 周福增 伏开虎 黄杰 陈琳 廖斌 张旭

周晗, 周福增, 伏开虎, 黄杰, 陈琳, 廖斌, 张旭. 基于原子发射光谱的TiC等离子体沉积诊断[J]. 原子核物理评论, 2015, 32(S1): 79-83. doi: 10.11804/NuclPhysRev.32.S1.79
引用本文: 周晗, 周福增, 伏开虎, 黄杰, 陈琳, 廖斌, 张旭. 基于原子发射光谱的TiC等离子体沉积诊断[J]. 原子核物理评论, 2015, 32(S1): 79-83. doi: 10.11804/NuclPhysRev.32.S1.79
ZHOU Han, ZHOU Fuzeng, FU Kaihu, HUANG Jie, CHEN Lin, LIAO Bin, ZHANG Xu. Optical Emission Diagonositcs of Plasma Used for TiC Deposition[J]. Nuclear Physics Review, 2015, 32(S1): 79-83. doi: 10.11804/NuclPhysRev.32.S1.79
Citation: ZHOU Han, ZHOU Fuzeng, FU Kaihu, HUANG Jie, CHEN Lin, LIAO Bin, ZHANG Xu. Optical Emission Diagonositcs of Plasma Used for TiC Deposition[J]. Nuclear Physics Review, 2015, 32(S1): 79-83. doi: 10.11804/NuclPhysRev.32.S1.79

基于原子发射光谱的TiC等离子体沉积诊断

doi: 10.11804/NuclPhysRev.32.S1.79

Optical Emission Diagonositcs of Plasma Used for TiC Deposition

  • 摘要: 对通过磁过滤阴极真空弧(FCVA) 获得的高密度、高离化率的等离子体进行诊断。为研究C2H2 气流量对磁过滤阴极弧产生的等离子体的影响,采用原子发射光谱(OES) 法对FCVA沉积过程中产生的TiC 等离子体进行诊断。利用Saha-Boltzmann 方法对不同气流量下等离子体的参数进行计算,并对等离子体产生过程中的谱线强度随气流量变化的机制进行研究。结果表明,等离子体电离度较高,约为0.8 左右且随气流量的变化不大;电子温度和电子密度分别在1104 2104 K和1023 1024 m*3 范围内变化,且随着气流量的增加呈现出先增大后减小的变化趋势;Ti 粒子谱线相对强度随气流量的变化不大,表明Ti 粒子大部分在阴极弧斑附近被离化。

    Optical diagnostics of high density and ionization plasma generated by Filter cathodic arc vacuum arc(FCVA) technique were investigated in this paper. The effects of acetylene flow rate on the plasma parameter of TiC were also been studied by optical emission spectroscopy. The plasma parameters were calculated using Saha-Boltzmann method. Results show that the plasma has high degree of ionization, and there is little effect of the acetylene flow rate on ionization degree. The electron temperature ranges from 1104 to 2104 K, the electron density ranges from 1023 to 1024 m*3, and they all increase firstly and then decrease, with the increase of the acetylene flow rate. The relative intensity of the Ti varies little as the flow rate increases, which indicate that most of Ti plasma was ionized around the cathodic arc spot.
  • 加载中
计量
  • 文章访问数:  374
  • HTML全文浏览量:  25
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-11-20

基于原子发射光谱的TiC等离子体沉积诊断

doi: 10.11804/NuclPhysRev.32.S1.79

摘要: 对通过磁过滤阴极真空弧(FCVA) 获得的高密度、高离化率的等离子体进行诊断。为研究C2H2 气流量对磁过滤阴极弧产生的等离子体的影响,采用原子发射光谱(OES) 法对FCVA沉积过程中产生的TiC 等离子体进行诊断。利用Saha-Boltzmann 方法对不同气流量下等离子体的参数进行计算,并对等离子体产生过程中的谱线强度随气流量变化的机制进行研究。结果表明,等离子体电离度较高,约为0.8 左右且随气流量的变化不大;电子温度和电子密度分别在1104 2104 K和1023 1024 m*3 范围内变化,且随着气流量的增加呈现出先增大后减小的变化趋势;Ti 粒子谱线相对强度随气流量的变化不大,表明Ti 粒子大部分在阴极弧斑附近被离化。

Optical diagnostics of high density and ionization plasma generated by Filter cathodic arc vacuum arc(FCVA) technique were investigated in this paper. The effects of acetylene flow rate on the plasma parameter of TiC were also been studied by optical emission spectroscopy. The plasma parameters were calculated using Saha-Boltzmann method. Results show that the plasma has high degree of ionization, and there is little effect of the acetylene flow rate on ionization degree. The electron temperature ranges from 1104 to 2104 K, the electron density ranges from 1023 to 1024 m*3, and they all increase firstly and then decrease, with the increase of the acetylene flow rate. The relative intensity of the Ti varies little as the flow rate increases, which indicate that most of Ti plasma was ionized around the cathodic arc spot.

English Abstract

周晗, 周福增, 伏开虎, 黄杰, 陈琳, 廖斌, 张旭. 基于原子发射光谱的TiC等离子体沉积诊断[J]. 原子核物理评论, 2015, 32(S1): 79-83. doi: 10.11804/NuclPhysRev.32.S1.79
引用本文: 周晗, 周福增, 伏开虎, 黄杰, 陈琳, 廖斌, 张旭. 基于原子发射光谱的TiC等离子体沉积诊断[J]. 原子核物理评论, 2015, 32(S1): 79-83. doi: 10.11804/NuclPhysRev.32.S1.79
ZHOU Han, ZHOU Fuzeng, FU Kaihu, HUANG Jie, CHEN Lin, LIAO Bin, ZHANG Xu. Optical Emission Diagonositcs of Plasma Used for TiC Deposition[J]. Nuclear Physics Review, 2015, 32(S1): 79-83. doi: 10.11804/NuclPhysRev.32.S1.79
Citation: ZHOU Han, ZHOU Fuzeng, FU Kaihu, HUANG Jie, CHEN Lin, LIAO Bin, ZHANG Xu. Optical Emission Diagonositcs of Plasma Used for TiC Deposition[J]. Nuclear Physics Review, 2015, 32(S1): 79-83. doi: 10.11804/NuclPhysRev.32.S1.79

目录

    /

    返回文章
    返回